Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 15, 2012 - Issue 5
73
Views
6
CrossRef citations to date
0
Altmetric
Research articles

The impact of chronic imipramine treatment on amino acid concentrations in the hippocampus of mice

, , &
Pages 26-33 | Published online: 19 Jul 2013

References

  • Pincus HA, Pettit AR. The societal costs of chronic major depression. J Clin Psychiatry 2001;62 (suppl.):5–9.
  • Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 2004;29(6):417–26.
  • Campbell S, Marriott M, Nahmias C, Macqueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 2004;161:598–607.
  • DeCarolis NA, Eisch A. Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 2010;58:884–93.
  • Sheline Y, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry 2003;160:1–3.
  • Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 2003;54:693–702.
  • Gelenberg AJ, Chesen CL. How fast are antidepressants? J Clin Psychiatry 2000;61:712–21.
  • Koenig AM, Thase ME. First-line pharmacotheraoies for depression – what is the best choice? Pol Arch Med Wewn 2009;119(7–8):478–86.
  • Rief W, Nestoriuc Yvonne N, Lilienfeld-Toal AV, Dogan I, Schreiber F, Hofmann SG, et al. Differences in adverse effect reporting in placebo groups in SSRI and tricyclic antidepressant trials. Drug Saf 2009;32:1041–56.
  • Kokras N, Antoniou K, Polissidis A, Papadopoulou-Daifoti Z. Antidepressants induce regionally discrete, sex-dependent changes in brain's glutamate content. Neurosci Lett 2009;464:98–102.
  • Murakami T, Yamane H, Tomonaga T, Furuse M. Forced swimming and imipramine modify plasma and brain amino acid concentrations in mice. Eur J Pharmacol 2009;602:73–7.
  • Yamane H, Asechi M, Tsuneyoshi Y, Kurauchi I, Denbow DM, Furuse M. Intracerebroventricular injection of l-aspartic acid and l-asparagine induces sedative effects under an acute stressful condition in neonatal chicks. Anim Sci J 2009;80:286–90.
  • Hamasu K, Haraguchi T, Kabuki Y, Adachi N, Tomonaga S, Sato H, et al. l-proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids 2009;37:377–82.
  • Suenaga R, Yamane H, Tomonaga S, Asechi M, Adachi M, Tssuneyoshi Y, et al. Central l-arginine reduced stress responses are mediated by l-ornithine in neonatal chicks. Amino Acids 2008;35:107–13.
  • Suenaga R, Tomonaga S, Yamane H, Kurauchi I, Tsuneyoshi Y, Sato H, et al. Intracerebroventricular injection of l-arginine induces sedative and hypnotic effects under an acute stress in neonatak chicks. Amino Acids 2008;35:139–46.
  • Asechi M, Tomonaga S, Tachibana T, Han L, Hayamizu K, Denbow DM, et al. Intracerebroventricular injection of l-serine analogs and derivatives induces sedative and hypnotic effects under an acute stressful condition in neonatal chicks. Behav Brain Res 2006;170:71–7.
  • Wong PT, Ong YP. Acute antidepressant-like and antianxiety-like effects of tryptophan in mice. Pharmacology 2001;62:151–6.
  • Réus GZ, Stringari RB, Kirsch TR, Fries GR, Kapczinski F, Roesler R, et al. Neurochemical and behavioral effects of acute and chronic mematine administration in rats: further support for NMDA as a new pharmacological target for the treatment of depression? Brain Res Bull 2010;81:585–9.
  • Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis; opposing effects of stress and antideoressant treatment. Hippocampus 2006;16:239–49.
  • Alonso R, Griebel G, Pavone G, Stemmeline J, Fur GL, Soubrié P. Blockade of CRF1 or V1b receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 2004;9:278–86.
  • Czéh B, Welt T, Fischer AK, Erhardt A, Schmitt W, Müller MB, et al. Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry 2002;52:1057–65.
  • Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 2003;28:1562–71.
  • Pham K, Nacher J, Hof PR, McEwen BS. Rapeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 2003;17:879–86.
  • Tanapat P, Hastings NB, Rydel TA, Galea LAM, Gould E. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 2001;437:496–504.
  • Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindval O, Tingström A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000;47:1043–9.
  • Malberg JE, Eisch AJ, Nestler EE, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000;20:9104–10.
  • Manev H, Uz T, Smalheiser NR, Manev R. Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol 2001;411:67–70.
  • Nakagawa S, Kim JE, Lee R, Malberg JE, Nestler CJ, Duman RS. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 2002;22(9):3673–82.
  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003;301:805–9.
  • Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res 2005;1037:204–8.
  • Shirayama Y, Chen ACH, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral model of depression. J Neurosci 2002;22:3251–61.
  • Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997;56:131–7.
  • Russo-Neustadt A, Beard RC, Huang YM, Cotman CW. Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 2000;101:305–12.
  • Jacqueline D, Hoomissen V, Chambliss HO, Holmes PV, Dishman RK. Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Res 2003;974:228–35.
  • Foubert GDE, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA, et al. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 2004;128:597–604.
  • Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.
  • Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I. Ketogenic diet, amino acid metabolism, and seizure control. J Neurosci Res 2001;66:931–40.
  • Curcio M, Catto E, Stramentioli G, Algeri S. Effect of S-adenosyl-l-methionine on serotonin metabolism in rat brain. Prog Neuropsychopharmacol 1978;2:65–71.
  • Ishikawa T, Sakabe T, Nishiyama Y, Abe M, Takeshita H, Niwa M, et al. Effect of S-adenosyl-l-methionine on cerebral monoamine turnover after hypoxia in rats. Nippon Yakurigaku Zasshi 1986;88:425–31.
  • Mischoulon D, Fava M. Role of S-adenosyl-l-methionine in the treatment of depression: a review of the evidence. Am J Clin Nutr 2002;76:1158S–61S.
  • Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 2000;130:1016S–22S.
  • Daikhin Y, Yudkoff M. Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 2000;130:1026S–31S.
  • Kurumaji A, Mitsushio H, Takashima M. Chronic dietary treatment with antidepressants decrease brain Met-enkephalin-like immunoreactivity in the rat. Psychopharmacology 1988;94:188–92.
  • Vanina Y, Podolskaya A, Sedky K, Shahab H, Siddiqui A, Munshi F. Body weight changes associated with psychopharmacology. Psychiatr Serv 2002;53:842–7.
  • Nomura Y, Schmidt-Glenew T, Giacobini E, Ortiz J. Metabolism of cadaverine and pipecolic acid in brain and other organs of the mouse. J Neurosci Res 1983;9:279–89.
  • Takagi T, Ando R, Ohguchi A, Nakanishi T, Hussain-Yusuf H, Onodera R, et al. Effect of oral administration of l-pipecolic acid on food intake in chicks and mice. Anim Sci J 2003;74:101–4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.