Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 17, 2014 - Issue 5
387
Views
30
CrossRef citations to date
0
Altmetric
Review

Molecular mechanisms of cognitive impairment in iron deficiency: Alterations in brain-derived neurotrophic factor and Insulin-like growth factor expression and function in the central nervous system

, , &

References

  • Andrews NC, Schmidt PJ. Iron homeostasis. Annu Rev Physiol 2007;69:69–85.
  • Fontenay M, Cathelin S, Amiot M, Gyan E, Solary E. Mitochondria in hematopoiesis and hematological diseases. Oncogene 2006;25(34):4757–67.
  • Beard J. Recent evidence from human and animal studies regarding iron status and infant development. J Nutr 2007;137(2):524S–30S.
  • Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 2006;64(5 Pt 2):S34–43; discussion S72–91.
  • Bothwell TH. Overview and mechanisms of iron regulation. Nutr Rev 1995;53(9):237–45.
  • Dallman PR. Biochemical basis for the manifestations of iron deficiency. Annu Rev Nutr 1986;6:13–40.
  • Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease. Proc Natl Acad Sci USA 2008;105(47):18578–83.
  • Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW, Jr., Cohen ML, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 2010;19(1):363–72.
  • Finberg KE. Unraveling mechanisms regulating systemic iron homeostasis. Hematology Am Soc Hematol Educ Program 2011;2011:532–7.
  • Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 1999;21(2):195–9.
  • Harris ZL, Durley AP, Man TK, Gitlin JD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA 1999;96(19):10812–7.
  • Idzerda RL, Huebers H, Finch CA, McKnight GS. Rat transferrin gene expression: tissue-specific regulation by iron deficiency. Proc Natl Acad Sci USA 1986;83(11):3723–7.
  • Eisenstein RS. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 2000;20:627–62.
  • Meyron-Holtz EG, Moshe-Belizowski S, Cohen LA. A possible role for secreted ferritin in tissue iron distribution. J Neural Transm 2011;118(3):337–47.
  • Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 2000;20(1):77–95.
  • Aisen P. Transferrin, the transferrin receptor, and the uptake of iron by cells. Met Ions Biol Syst 1998;35:585–631.
  • Suominen P, Punnonen K, Rajamaki A, Irjala K. Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical iron deficits. Blood 1998;92(8):2934–9.
  • Beard J, Han O. Systemic iron status. Biochim Biophys Acta 2009;1790(7):584–8.
  • Cao C, O'Brien KO. Pregnancy and iron homeostasis: an update. Nutr Rev 2013;71(1):35–51.
  • McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutrition 2009;12(04):444–54.
  • Ramakrishnan U, Frith-Terhune A, Cogswell M, Kettel Khan L. Dietary intake does not account for differences in low iron stores among Mexican American and non-Hispanic white women: third National Health and Nutrition Examination Survey, 1988–1994. J Nutr 2002;132(5):996–1001.
  • Swensen AR, Harnack LJ, Ross JA. Nutritional assessment of pregnant women enrolled in the Special Supplemental Program for Women, Infants, and Children (WIC). J Am Diet Assoc 2001;101(8):903–8.
  • Markesbery WR, Ehmann WD, Alauddin M, Hossain TI. Brain trace element concentrations in aging. Neurobiol Aging 1984;5(1):19–28.
  • Gulbis B, Jauniaux E, Decuyper J, Thiry P, Jurkovic D, Campbell S. Distribution of iron and iron-binding proteins in first-trimester human pregnancies. Obstet Gynecol 1994;84(2):289–93.
  • Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR. MR evaluation of age-related increase of brain iron in young adult and older normal males. Mag Resonance Imaging 1997;15(1):29–35.
  • Ehrenkranz RA. Iron requirements of preterm infants. Nutrition 1994;10(1):77–8.
  • Moos T, Rosengren Nielsen T, Skjorringe T, Morgan EH. Iron trafficking inside the brain. J Neurochem 2007;103(5):1730–40.
  • Ueda F, Raja KB, Simpson RJ, Trowbridge IS, Bradbury MW. Rate of 59Fe uptake into brain and cerebrospinal fluid and the influence thereon of antibodies against the transferrin receptor. J Neurochem 1993;60(1):106–13.
  • Taylor EM, Crowe A, Morgan EH. Transferrin and iron uptake by the brain: effects of altered iron status. J Neurochem 1991;57(5):1584–92.
  • Khedr E, Hamed S, Elbeih E, El-Shereef H, Ahmad Y, Ahmed S. Iron states and cognitive abilities in young adults: neuropsychological and neurophysiological assessment. Eur Arch Psychiatry Clin Neurosci 2008;258(8):489–96.
  • Lozoff B, Beard J, Connor J, Felt B, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 2006;64:S34–43.
  • Savoie N, Rioux FM. Impact of maternal anemia on the infant's iron status at 9 months of age. Can J Public Health 2002;93(3):203–7.
  • Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr 2003;23:41–58.
  • Lozoff B, De Andraca I, Castillo M, Smith JB, Walter T, Pino P. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics 2003;112(4):846–54.
  • Otero GA, Pliego-Rivero FB, Porcayo-Mercado R, Mendieta-Alcántara G. Working memory impairment and recovery in iron deficient children. Clin Neurophysiol 2008;119(8):1739–46.
  • Ward KL, Tkac I, Jing Y, Felt B, Beard J, Connor J, et al. Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J Nutr 2007;137(4):1043–9.
  • Tamura T, Goldenberg RL, Hou J, Johnston KE, Cliver SP, Ramey SL, et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr 2002;140(2):165–70.
  • Wachs TD, Pollitt E, Cueto S, Jacoby E, Creed-Kanashiro H. Relation of neonatal iron status to individual variability in neonatal temperament. Dev Psychobiol 2005;46(2):141–53.
  • Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 2000;105(4):e51.
  • Lukowski A, Koss M, Burden M, Jonides J, Nelson C, Kaciroti N, et al. Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory. Nutr Neurosci 2010;13(2):54–70.
  • Georgieff MK. The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem Soc Trans 2008;36(Pt 6):1267–71.
  • Lozoff B. Early iron deficiency has brain and behavior effects consistent with dopaminergic dysfunction. J Nutr 2011;141(4):740S–6S.
  • Georgieff MK. Long-term brain and behavioral consequences of early iron deficiency. Nutr Rev 2011;69(Suppl 1):S43–8.
  • Jorgenson LA, Wobken JD, Georgieff MK. Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev Neurosci 2003;25(6):412–20.
  • Kretchmer N, Beard JL, Carlson S. The role of nutrition in the development of normal cognition. Am J Clin Nutr 1996;63(6):997S–1001S.
  • Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK. Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 2003;133(10):3215–21.
  • Kwik-Uribe CL, Gietzen D, German JB, Golub MS, Keen CL. Chronic marginal iron intakes during early development in mice result in persistent changes in dopamine metabolism and myelin composition. J Nutr 2000;130(11):2821–30.
  • Romero MDSC, Pliego-Rivero FB, Altamirano BM, Otero GA. Effect of postlactation iron deficiency on the composition of fatty acids of whole brain myelin. Nutr Neurosci 2010;13(5):237–44.
  • Burhans MS, Dailey C, Beard Z, Wiesinger J, Murray-Kolb L, Jones BC, et al. Iron deficiency: Differential effects on monoamine transporters. Nutr Neurosci 2005;8(1):31–8.
  • Erikson KM, Jones BC, Hess EJ, Zhang Q, Beard JL. Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacol Biochem Behav 2001;69(3–4):409–18.
  • Felt BT, Lozoff B. Brain iron and behavior of rats are not normalized by treatment of iron deficiency anemia during early development. J Nutr 1996;126(3):693–701.
  • Shafir T, Angulo-Barroso R, Jing Y, Angelilli ML, Jacobson SW, Lozoff B. Iron deficiency and infant motor development. Early Human Dev 2008;84(7):479–85.
  • Ayala R, Otero GA, Porcayo Mercado R, Pliego-Rivero FB. Delayed CNS maturation in iron-deficient anaemic infants. Nutr Neurosci 2008;11(2):61–8.
  • Otero GA, Pliego-Rivero FB, Porcayo-Mercado R, Mendieta-Alcantara G. Working memory impairment and recovery in iron deficient children. Clin Neurophysiol 2008;119(8):1739–46.
  • Thoenen H. Neurotrophins and neuronal plasticity. Science 1995;270(5236):593–8.
  • Barde YA. Trophic factors and neuronal survival. Neuron 1989;2(6):1525–34.
  • Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1982;1(5):549–53.
  • Ibanez CF. Neurotrophic factors: from structure-function studies to designing effective therapeutics. Trends Biotechnol 1995;13(6):217–27.
  • Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987;237(4819):1154–62.
  • Dore S, Kar S, Quirion R. Rediscovering an old friend, IGF-I: potential use in the treatment of neurodegenerative diseases. Trends Neurosci 1997;20(8):326–31.
  • Ip NY, Yancopoulos GD. The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Annu Rev Neurosci 1996;19:491–515.
  • Lindsay RM, Yancopoulos GD. GDNF in a bind with known orphan: accessory implicated in new twist. Neuron 1996;17(4):571–4.
  • Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R. Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci USA 1986;83(9):3012–6.
  • Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol 2012;846:1–12.
  • Bibel M, Hoppe E, Barde YA. Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 1999;18(3):616–22.
  • Esposito D, Patel P, Stephens RM, Perez P, Chao MV, Kaplan DR, et al. The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem 2001;276(35):32687–95.
  • Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 1991;66(2):395–403.
  • Lamballe F, Klein R, Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 1991;66(5):967–79.
  • Rodriguez-Tebar A, Dechant G, Barde YA. Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron 1990;4(4):487–92.
  • Rodriguez-Tebar A, Dechant G, Gotz R, Barde YA. Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. EMBO J 1992;11(3):917–22.
  • Squinto SP, Stitt TN, Aldrich TH, Davis S, Bianco SM, Radziejewski C, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 1991;65(5):885–93.
  • Eide FF, Lowenstein DH, Reichardt LF. Neurotrophins and their receptors–current concepts and implications for neurologic disease. Exp Neurol 1993;121(2):200–14.
  • Ip NY, Stitt TN, Tapley P, Klein R, Glass DJ, Fandl J, et al. Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron 1993;10(2):137–49.
  • Benedetti M, Levi A, Chao MV. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci USA 1993;90(16):7859–63.
  • Curtis R, Adryan KM, Stark JL, Park JS, Compton DL, Weskamp G, et al. Differential role of the low affinity neurotrophin receptor (p75) in retrograde axonal transport of the neurotrophins. Neuron 1995;14(6):1201–11.
  • Makkerh JP, Ceni C, Auld DS, Vaillancourt F, Dorval G, Barker PA. p75 neurotrophin receptor reduces ligand-induced Trk receptor ubiquitination and delays Trk receptor internalization and degradation. EMBO Rep 2005;6(10):936–41.
  • Skaper SD. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 2008;7(1):46–62.
  • Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006;361(1473):1545–64.
  • Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 2003;72:609–42.
  • Segal RA, Greenberg ME. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci 1996;19:463–89.
  • Rajagopal R, Chao MV. A role for Fyn in Trk receptor transactivation by G-protein-coupled receptor signaling. Mol Cell Neurosci 2006;33(1):36–46.
  • Rajagopal R, Chen ZY, Lee FS, Chao MV. Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 2004;24(30):6650–8.
  • Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, et al. Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci USA 2007;104(43):17210–5.
  • de Pablo F, de la Rosa EJ. The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 1995;18(3):143–50.
  • El-Shewy HM, Luttrell LM. Chapter 24 insulin-like growth factor-2/mannose-6 phosphate receptors. In: Gerald L, (ed.) Vitamins & hormones. Academic Press; 2009. p. 667–97.
  • Straus D. Nutritional regulation of hormones and growth factors that control mammalian growth. FASEB J 1994;8(1):6–12.
  • Aguila MC, Boggaram V, McCann SM. Insulin-like growth factor I modulates hypothalamic somatostatin through a growth hormone releasing factor increased somatostatin release and messenger ribonucleic acid levels. Brain Res 1993;625(2):213–8.
  • Uchiyama T, Kaji H, Abe H, Chihara K. Negative regulation of hypothalamic growth hormone-releasing factor messenger ribonucleic acid by growth hormone and insulin-like growth factor I. Neuroendocrinology 1994;59(5):441–50.
  • Lupien SB, Bluhm EJ, Ishii DN. Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci Res 2003;74(4):512–23.
  • Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012;13(4):225–39.
  • Couce ME, Weatherington AJ, McGinty JF. Expression of insulin-like growth factor-II (IGF-II) and IGF-II/mannose-6-phosphate receptor in the rat hippocampus: an in situ hybridization and immunocytochemical study. Endocrinology 1992;131(4):1636–42.
  • El-Shewy HM, Lee M-H, Obeid LM, Jaffa AA, Luttrell LM. The insulin-like growth factor type 1 and insulin-like growth factor type 2/mannose-6-phosphate receptors independently regulate ERK1/2 activity in HEK293 cells. J Biol Chem 2007;282(36):26150–7.
  • Rubini M, Hongo A, D'Ambrosio C, Baserga R. The IGF-I receptor in mitogenesis and transformation of mouse embryo cells: role of receptor number. Exp Cell Res 1997;230(2):284–92.
  • Duan Z, Choy E, Harmon D, Yang C, Ryu K, Schwab J, et al. Insulin-like growth factor-I receptor tyrosine kinase inhibitor cyclolignan picropodophyllin inhibits proliferation and induces apoptosis in multidrug resistant osteosarcoma cell lines. Mol Cancer Ther 2009;8(8):2122–30.
  • Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003;302(5646):885–9.
  • Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 1998;20(4):709–26.
  • Tao X, West AE, Chen WG, Corfas G, Greenberg ME. A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron 2002;33(3):383–95.
  • Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science 2001;294(5548):1945–8.
  • Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL, Longo FM, et al. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 2002;36(3):375–86.
  • Harrington AW, Leiner B, Blechschmitt C, Arevalo JC, Lee R, Morl K, et al. Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci USA 2004;101(16):6226–30.
  • Garner AS, Menegay HJ, Boeshore KL, Xie XY, Voci JM, Johnson JE, et al. Expression of TrkB receptor isoforms in the developing avian visual system. J Neurosci 1996;16(5):1740–52.
  • Meakin SO, Suter U, Drinkwater CC, Welcher AA, Shooter EM. The rat trk protooncogene product exhibits properties characteristic of the slow nerve growth factor receptor. Proc Natl Acad Sci USA 1992;89(6):2374–8.
  • Shelton DL, Sutherland J, Gripp J, Camerato T, Armanini MP, Phillips HS, et al. Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J Neurosci 1995;15(1 Pt 2):477–91.
  • Clary DO, Reichardt LF. An alternatively spliced form of the nerve growth factor receptor TrkA confers an enhanced response to neurotrophin 3. Proc Natl Acad Sci USA 1994;91(23):11133–7.
  • Strohmaier C, Carter BD, Urfer R, Barde YA, Dechant G. A splice variant of the neurotrophin receptor trkB with increased specificity for brain-derived neurotrophic factor. EMBO J 1996;15(13):3332–7.
  • Eide FF, Vining ER, Eide BL, Zang K, Wang XY, Reichardt LF. Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 1996;16(10):3123–9.
  • Esteban PF, Yoon HY, Becker J, Dorsey SG, Caprari P, Palko ME, et al. A kinase-deficient TrkC receptor isoform activates Arf6-Rac1 signaling through the scaffold protein tamalin. J Cell Biol 2006;173(2):291–9.
  • Guiton M, Gunn-Moore FJ, Glass DJ, Geis DR, Yancopoulos GD, Tavare JM. Naturally occurring tyrosine kinase inserts block high affinity binding of phospholipase C gamma and Shc to TrkC and neurotrophin-3 signaling. J Biol Chem 1995;270(35):20384–90.
  • Meakin SO, Gryz EA, MacDonald JI. A kinase insert isoform of rat TrkA supports nerve growth factor-dependent cell survival but not neurite outgrowth. J Neurochem 1997;69(3):954–67.
  • Rose CR, Blum R, Pichler B, Lepier A, Kafitz KW, Konnerth A. Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 2003;426(6962):74–8.
  • Barbacid M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann NY Acad Sci 1995;766(1):442–58.
  • Barnabé-Heider F, Miller FD. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci 2003;23(12):5149–60.
  • Zigova T, Pencea V, Wiegand SJ, Luskin MB. Intraventricular Administration of BDNF Increases the Number of Newly Generated Neurons in the Adult Olfactory Bulb. Mol Cell Neurosci 1998;11(4):234–45.
  • VonDran MW, Singh H, Honeywell JZ, Dreyfus CF. Levels of BDNF impact oligodendrocyte lineage cells following a cuprizone lesion. J Neurosci 2011;31(40):14182–90.
  • Tolwani RJ, Buckmaster PS, Varma S, Cosgaya JM, Wu Y, Suri C, et al. BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience 2002;114(3):795–805.
  • Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995;267(5204):1658–62.
  • Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 2003;91(4):267–70.
  • Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001;63(1):71–124.
  • Neeper SA, Gómez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature 1995;373(6510):109.
  • Castrén E, Berninger B, Leingärtner A, Lindholm D. Regulation of brain-derived neurotrophic factor mRNA levels in hippocampus by neuronal activity. Prog Brain Res 1998;117:57–64.
  • Shin MK, Kim HG, Kim KL. A novel trimeric peptide, Neuropep-1-stimulating brain-derived neurotrophic factor expression in rat brain improves spatial learning and memory as measured by the Y-maze and Morris water maze. J Neurochem 2011;116(2):205–16.
  • Alonso M, Vianna MRM, Depino AM, Mello e Souza T, Pereira P, Szapiro G, et al. BDNF–triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 2002;12(4):551–60.
  • Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of Brain-Derived Neurotrophic Factor (BDNF) Protein and mRNA in the Normal Adult Rat CNS: evidence for Anterograde Axonal Transport. J Neurosci 1997;17(7):2295–313.
  • Hall J, Thomas KL, Everitt BJ. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci [Research Support, Non-US Gov't] 2000;3(6):533–5.
  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003;112(2):257–69.
  • Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 2003;23(17):6690–4.
  • Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 1996;381(6584):706–9.
  • Nagappan G, Lu B. Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 2005;28(9):464–71.
  • Silhol M, Bonnichon V, Rage F, Tapia-Arancibia L. Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neuroscience 2005;132(3):613–24.
  • Tang S, Machaalani R, Waters KA. Immunolocalization of pro- and mature-brain derived neurotrophic factor (BDNF) and receptor TrkB in the human brainstem and hippocampus. Brain Res 2010;1354(0):1–14.
  • Saarelainen T, Pussinen R, Koponen E, Alhonen L, Wong G, Sirviö J, et al. Transgenic mice overexpressing truncated trkB neurotrophin receptors in neurons have impaired long-term spatial memory but normal hippocampal LTP. Synapse 2000;38(1):102–4.
  • Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LRM, Izquierdo I, Medina JH. Persistence of Long-Term Memory Storage Requires a Late Protein Synthesis- and BDNF- Dependent Phase in the Hippocampus. Neuron 2007;53(2):261–77.
  • Bekinschtein P, Cammarota M, Izquierdo I, Medina JH. Reviews: BDNF and Memory Formation and Storage. Neuroscientist 2008;14(2):147–56.
  • Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004;306(5695):487–91.
  • Ferrer I, Marín C, Rey MJ, Ribalta T, Goutan E, Blanco R, et al. BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 1999;58(7):729–39.
  • Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med 2009;15(3):331–7.
  • Yeo GS, Connie Hung CC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci 2004;7(11):1187–9.
  • Green BN, Jones SB, Streck RD, Wood TL, Rotwein P, Pintar JE. Distinct expression patterns of insulin-like growth factor binding proteins 2 and 5 during fetal and postnatal development. Endocrinology 1994;134(2):954–62.
  • Ye P, Li L, Richards RG, DiAugustine RP, D'Ercole AJ. Myelination is altered in insulin-like growth factor-i null mutant mice. J Neurosci 2002;22(14):6041–51.
  • González-Parra S, Argente J, Chowen JA, Van Kleffens M, Van Neck JW, Lindenbeigh-Kortleve DJ, et al. Gene expression of the insulin-like growth factor system during postnatal development of the rat pituitary gland. J Neuroendocrinol 2001;13(1):86–93.
  • Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 2006;140(3):823–33.
  • Bondy C, Werner H, Roberts CT, Jr, LeRoith D. Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 1992;46(4):909–23.
  • García-Segura LM, Pérez J, Pons S, Rejas MT, Torres-Alemán I. Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain. Brain Res 1991;560(1–2):167–74.
  • Chernausek SD. Insulin-like growth factor-I (IGF-I) production by astroglial cells: regulation and importance for epidermal growth factor-induced cell replication. J Neurosci Res 1993;24(2):189–97.
  • Shinar Y, McMorris FA. Developing oligodendroglia express mRNA for insulin-like growth factor-I, a regulator of oligodendrocyte development. J Neurosci Res 1995;42(4):516–27.
  • O'Kusky JR, Ye P, D'Ercole AJ. Increased expression of insulin-like growth factor I augments the progressive phase of synaptogenesis without preventing synapse elimination in the hypoglossal nucleus. J Comparat Neurol 2003;464(3):382–91.
  • Popken GJ, Hodge RD, Ye P, Zhang J, Ng W, O'Kusky JR, et al. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur J Neurosci 2004;19(8):2056–68.
  • Liu W, Ye P, O'Kusky JR, D'Ercole AJ. Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. J Neurosci Res 2009;87(13):2821–32.
  • Liu X, Yao D-L, Bondy CA, Brenner M, Hudson LD, Zhou J, et al. Astrocytes express insulin-like growth factor-I (IGF-I) and its binding protein, IGFBP-2, during demyelination induced by experimental autoimmune encephalomyelitis. Mol Cell Neurosci 1994;5(5):418–30.
  • Ye P, Popken GJ, Kemper A, McCarthy K, Popko B, D'Ercole AJ. Astrocyte-specific overexpression of insulin-like growth factor-I promotes brain overgrowth and glial fibrillary acidic protein expression. J Neurosci Res 2004;78(4):472–84.
  • Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, et al. Ageing, fitness and neurocognitive function. Nature 1999;400(6743):418–9.
  • DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 1990;345(6270):78–80.
  • Haselbacher GK, Schwab ME, Pasi A, Humbel RE. Insulin-like growth factor II (IGF II) in human brain: regional distribution of IGF II and of higher molecular mass forms. Proc Natl Acad Sci 1985;82(7):2153–7.
  • Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocrine Rev 2005;26(7):916–43.
  • Kar S, Chabot JG, Quirion R. Quantitative autoradiographic localization of [125I] insulin-like growth factor I, [125I] insulin-like growth factor II, and [125I] insulin receptor binding sites in developing and adult rat brain. J Comp Neurol 1993;333(3):375–97.
  • Napoli I, Blusztajn JK, Mellott TJ. Prenatal choline supplementation in rats increases the expression of IGF2 and its receptor IGF2R and enhances IGF2-induced acetylcholine release in hippocampus and frontal cortex. Brain Res 2008;1237(0):124–35.
  • Amritraj A, Rauw G, Baker GB, Kar S. Leu27 insulin-like growth factor-II, an insulin-like growth factor-II analog, attenuates depolarization-evoked GABA release from adult rat hippocampal and cortical slices. Neuroscience 2010;170(3):722–30.
  • Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 2011;469(7331):491–7.
  • Bhate V, Deshpande S, Bhat D, Joshi N, Ladkat R, Watve S, et al. Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food Nutr Bull 2008;29(4):249–54.
  • Black MM. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull 2008;29(2 Suppl):S126–31.
  • Sable P, Dangat K, Kale A, Joshi S. Altered brain neurotrophins at birth: consequence of imbalance in maternal folic acid and vitamin B(1)(2) metabolism. Neuroscience 2011;190:127–34.
  • Scalabrino G, Veber D, Mutti E. Experimental and clinical evidence of the role of cytokines and growth factors in the pathogenesis of acquired cobalamin-deficient leukoneuropathy. Brain Res Rev 2008;59(1):42–54.
  • Scalabrino G, Mutti E, Veber D, Aloe L, Corsi MM, Galbiati S, et al. Increased spinal cord NGF levels in rats with cobalamin (vitamin B12) deficiency. Neurosci Lett 2006;396(2):153–8.
  • Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 2003;26(3):137–46.
  • Reynolds EH. Folic acid, ageing, depression, and dementia. BMJ 2002;324(7352):1512–5.
  • Eckart S, Hortnagl H, Kronenberg G, Gertz K, Horster H, Endres M, et al. Reduced nerve growth factor levels in stress-related brain regions of folate-deficient mice. Neuroscience 2013;245:129–35.
  • Hambidge M. Human zinc deficiency. J Nutr 2000;130(5S Suppl):1344S–9S.
  • Maden M, Gale E, Zile M. The role of vitamin A in the development of the central nervous system. J Nutr 1998;128(2 Suppl):471S–5S.
  • Xie XM, Smart TG. A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 1991;349(6309):521–4.
  • Frederickson CJ, Hernandez MD, Goik SA, Morton JD, McGinty JF. Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: a histofluorescence study. Brain Res 1988;446(2):383–6.
  • Pfeiffer CC, Braverman ER. Zinc, the brain and behavior. Biol Psychiatry 1982;17(4):513–32.
  • Zhao GH, Yu P, Hu XS, Zhao L. Effect of Zn(II) on the structure and biological activity of natural beta-NGF. Acta Biochim Biophys Sin (Shanghai) 2004;36(2):99–104.
  • Keller KA, Chu Y, Grider A, Coffield JA. Supplementation with L-histidine during dietary zinc repletion improves short-term memory in zinc-restricted young adult male rats. J Nutr 2000;130(6):1633–40.
  • Kheirvari S, Uezu K, Sakai T, Nakamori M, Alizadeh M, Sarukura N, et al. Increased nerve growth factor by zinc supplementation with concurrent vitamin A deficiency does not improve memory performance in mice. J Nutr Sci Vitaminol (Tokyo) 2006;52(6):421–7.
  • Cocco S, Diaz G, Stancampiano R, Diana A, Carta M, Curreli R, et al. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience 2002;115(2):475–82.
  • Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav Brain Res 2003;145(1–2):37–49.
  • Misner DL, Jacobs S, Shimizu Y, de Urquiza AM, Solomin L, Perlmann T, et al. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A 2001;98(20):11714–9.
  • Naveilhan P, Neveu I, Wion D, Brachet P. 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 1996;7(13):2171–5.
  • Wion D, MacGrogan D, Neveu I, Jehan F, Houlgatte R, Brachet P. 1,25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J Neurosci Res 1991;28(1):110–4.
  • Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F. Vitamin D3 and brain development. Neuroscience 2003;118(3):641–53.
  • Feron F, Burne TH, Brown J, Smith E, McGrath JJ, Mackay-Sim A, et al. Developmental vitamin D3 deficiency alters the adult rat brain. Brain Res Bull 2005;65(2):141–8.
  • Lee DR, Semba R, Kondo H, Goto S, Nakano K. Decrease in the levels of NGF and BDNF in brains of mice fed a tryptophan-deficient diet. Biosci Biotechnol Biochem 1999;63(2):337–40.
  • Xie H, Leung K-L, Chen L, Chan Y-S, Ng P-C, Fok T-F, et al. Brain-derived neurotrophic factor rescues and prevents chronic intermittent hypoxia-induced impairment of hippocampal long-term synaptic plasticity. Neurobiol Dis 2010;40(1):155–62.
  • Cortese GP, Barrientos RM, Maier SF, Patterson SL. Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCγ1, and ERK in hippocampal synaptoneurosomes. J Neurosci 2011;31(11):4274–9.
  • Texel SJ, Camandola S, Ladenheim B, Rothman SM, Mughal MR, Unger EL, et al. Ceruloplasmin deficiency results in an anxiety phenotype involving deficits in hippocampal iron, serotonin, and BDNF. J Neurochem 2012;120(1):125–34.
  • Heldt SA, Stanek L, Chhatwal JP, Ressler KJ. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 2007;12(7):656–70.
  • Tran PV, Carlson ES, Fretham SJ, Georgieff MK. Early-life iron deficiency anemia alters neurotrophic factor expression and hippocampal neuron differentiation in male rats. J Nutr 2008;138(12):2495–501.
  • Tran PV, Fretham SJ, Carlson ES, Georgieff MK. Long-term reduction of hippocampal brain-derived neurotrophic factor activity after fetal-neonatal iron deficiency in adult rats. Pediatr Res 2009;65(6):493–8.
  • Argente J, Caballo N, Barrios V, Muñoz MT, Pozo J, Chowen JA, et al. Multiple endocrine abnormalities of the growth hormone and insulin-like growth factor axis in patients with anorexia nervosa: effect of short- and long-term weight recuperation. J Clin Endocrinol Metabol 1997;82(7):2084–92.
  • Muñoz MT, Barrios V, Pozo J, Argente J. Insulin-like growth factor I, its binding proteins 1 and 3, and growth hormone-binding protein in children and adolescents with insulin-dependent diabetes mellitus: clinical implications. Pediatr Res 1996;39(6):992–8.
  • Rivero F, Goya L, Alaez C, Pascual-Leone AM. Effects of undernutrition and diabetes on serum and liver mRNA expression of IGFs and their binding proteins during rat development. J Endocrinol 1995;145(3):427–40.
  • Fernandez-Galaz MC, Torres-Aleman I, Garcia-Segura LM. Endocrine-dependent accumulation of IGF-I by hypothalamic glia. Neuroreport 1996;8(1):373–7.
  • Lee W-H, Clemens JA, Bondy CA. Insulin-like growth factors in the response to cerebral ischemia. Mol Cell Neurosc 1992;3(1):36–43.
  • Boksa P, Zhang Y, Amritraj A, Kar S. Birth insults involving hypoxia produce long-term increases in hippocampal [125I]insulin-like growth factor-I and -II receptor binding in the rat. Neuroscience 2006;139(2):451–62.
  • Zhong J, Deng J, Phan J, Dlouhy S, Wu H, Yao W, et al. Insulin-like growth factor-I protects granule neurons from apoptosis and improves ataxia in weaver mice. J Neurosci Res 2005;80(4):481–90.
  • Ye P, D'Ercole AJ. Insulin-like growth factor I protects oligodendrocytes from tumor necrosis factor-α-induced injury. Endocrinology 1999;140(7):3063–72.
  • Cheng B, Mattson M. IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J Neurosci 1992;12(4):1558–66.
  • Ye P, Lee K-H, D'Ercole AJ. Insulin-like growth factor-I (IGF-I) protects myelination from undernutritional insult: studies of transgenic mice overexpressing IGF-I in brain. J Neurosci Res 2000;62(5):700–8.
  • Luzi P, Zaka M, Rao HZ, Curtis M, Rafi MA, Wenger DA. Generation of transgenic mice expressing insulin-like growth factor-1 under the control of the myelin basic protein promoter: increased myelination and potential for studies on the effects of increased IGF-1 on experimentally and genetically induced demyelination. Neurochem Res 2004;29(5):881–9.
  • Chowen JA, Goya L, Ramos S, Busiguina S, Garcia-Segura LM, Argente J, et al. Effects of early undernutrition on the brain insulin-like growth factor-I system. J Neuroendocrinol 2002;14(2):163–9.
  • Tran PV, Fretham SJ, Wobken J, Miller BS, Georgieff MK. Gestational-neonatal iron deficiency suppresses and iron treatment reactivates IGF signaling in developing rat hippocampus. Am J Physiol Endocrinol Metab 2011;302(3):E316–24.
  • Succurro E, Arturi F, Caruso V, Rudi S, Sciacqua A, Andreozzi F, et al. Low insulin-like growth factor-1 levels are associated with anaemia in adult non-diabetic subjects. Thromb Haemost 2011;195(2):365–70.
  • Correa PN, Axelrad AA. Production of erythropoietic bursts by progenitor cells from adult human peripheral blood in an improved serum-free medium: role of insulinlike growth factor 1. Blood 1991;78(11):2823–33.
  • Lopez-Fernandez J, Sanchez-Franco F, Velasco B, Tolon RM, Pazos F, Cacicedo L. Growth hormone induces somatostatin and insulin-like growth factor I gene expression in the cerebral hemispheres of aging rats. Endocrinology 1996;137(10):4384–91.
  • English JD, Sweatt JD. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 1997;272(31):19103–6.
  • Davis S, Vanhoutte P, Pagès C, Caboche J, Laroche S. The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 2000;20(12):4563–72.
  • Kurino M, Fukunaga K, Ushio Y, Miyamoto E. Activation of mitogen-activated protein kinase in cultured rat hippocampal neurons by stimulation of glutamate receptors. J Neurochem 1995;65(3):1282–9.
  • El-Shewy HM, Johnson KR, Lee M-H, Jaffa AA, Obeid LM, Luttrell LM. Insulin-like growth factors mediate heterotrimeric G protein-dependent ERK1/2 activation by transactivating sphingosine 1-phosphate receptors. J Biol Chem 2006;281(42):31399–407.
  • Valjent E, Corbille AG, Bertran-Gonzalez J, Herve D, Girault JA. Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference. Proc Natl Acad Sci USA 2006;103(8):2932–7.
  • Duvarci S, Nader K, LeDoux JE. Activation of extracellular signal-regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. Eur J Neurosci 2005;21(1):283–9.
  • Kelly A, Laroche S, Davis S. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci 2003;23(12):5354–60.
  • Treisman R. Journey to the surface of the cell: Fos regulation and the SRE. EMBO 1995;16(20):4905–13.
  • Sgambato V, Vanhoutte P, Pagès C, Rogard M, Hipskind R, Besson M-J, et al. In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain. J Neurosci 1998;18(1):214–26.
  • Besnard A, Galan B, Vanhoutte P, Caboche J. Elk-1 a transcription factor with multiple facets in the brain. Frontiers Neurosci [Review] 2011;5:1–11.
  • Deb S, Johnson EE, Robalinho-Teixeira RL, Wessling-Resnick M. Modulation of intracellular iron levels by oxidative stress implicates a novel role for iron in signal transduction. Biometals 2009;22(5):855–62.
  • Le NT, Richardson DR. The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta 2002;1603(1):31–46.
  • Yu Y, Richardson DR. Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1. J Biol Chem 2011;286(17):15413–27.
  • Wilkinson MG, Millar JB. Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J 2000;14(14):2147–57.
  • Antosiewicz J, Ziolkowski W, Kaczor JJ, Herman-Antosiewicz A. Tumor necrosis factor-alpha-induced reactive oxygen species formation is mediated by JNK1-dependent ferritin degradation and elevation of labile iron pool. Free Radic Biol Med 2007;43(2):265–70.
  • Kim BM, Chung HW. Desferrioxamine (DFX) induces apoptosis through the p38-caspase8-Bid-Bax pathway in PHA-stimulated human lymphocytes. Toxicol Appl Pharmacol 2008;228(1):24–31.
  • Seo GS, Lee SH, Choi SC, Choi EY, Oh HM, Choi EJ, et al. Iron chelator induces THP-1 cell differentiation potentially by modulating intracellular glutathione levels. Free Radic Biol Med 2006;40(9):1502–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.