Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 18, 2015 - Issue 2
1,391
Views
100
CrossRef citations to date
0
Altmetric
Review

A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review

, , &

References

  • WHO. Obesity and overweight. World Health Organization; 2013. Fact sheet No 311. Published in: http://www.who.int/mediacentre/factsheets/fs311/en/ 311.
  • Ricci-Cabello I, Herrera MO, Artacho R. Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr Rev 2012;70(4):241–55.
  • Loos RJ, Bouchard C. Obesity–is it a genetic disorder? J Intern Med 2003;254(5):401–25.
  • Dahlman I, Arner P. Obesity and polymorphisms in genes regulating human adipose tissue. Int J Obes (Lond) 2007;31(11):1629–41.
  • Bouchard C. Gene-environment interactions in the etiology of obesity: defining the fundamentals. Obesity (Silver Spring) 2008;16(Suppl 3):S5–10.
  • Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009;41(1):25–34.
  • Rokholm B, Silventoinen K, Angquist L, Skytthe A, Kyvik KO, Sorensen TI. Increased genetic variance of BMI with a higher prevalence of obesity. PloS One 2011;6(6):e20816.
  • Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013;93(1):359–404.
  • Chakrabarti R. Pharmacotherapy of obesity: emerging drugs and targets. Expert Opin Ther Targets 2009;13(2):195–207.
  • Hughes TE. Emerging therapies for metabolic diseases–the focus is on diabetes and obesity. Curr Opin Chem. Biol 2009;13(3):332–7.
  • Naslund E, Hellstrom PM. Appetite signaling: from gut peptides and enteric nerves to brain. Physiol Behav 2007;92(1–2):256–62.
  • Kang JG, Park CY. Anti-obesity drugs: a review about their effects and safety. Diab Metabol J 2012;36(1):13–25.
  • Derosa G, Maffioli P. Anti-obesity drugs: a review about their effects and their safety. Expert Opin Drug Saf 2012;11(3):459–71.
  • Aronne LJ, Powell AG, Apovian CM. Emerging pharmacotherapy for obesity. Expert Opin Emerging Drugs 2011;16(3):587–96.
  • Powell AG, Apovian CM, Aronne LJ. New drug targets for the treatment of obesity. Clin Pharmacol Ther 2011;90(1):40–51.
  • Douglas A, Douglas JG, Robertson CE, Munro JF. Plasma phentermine levels, weight loss and side-effects. Int J Obes 1983;7(6):591–5.
  • Gooda Sahib N, Saari N, Ismail A, Khatib A, Mahomoodally F, Abdul Hamid A. Plants' metabolites as potential antiobesity agents. Sci World J 2012;2012:8.
  • Hadvary P, Lengsfeld H, Wolfer H. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem J 1988;256(2):357–61.
  • Ballinger A, Peikin SR. Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol 2002;440(2–3):109–17.
  • Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 2007;12(19–20):879–89.
  • Thomsen WJ, Grottick AJ, Menzaghi F, Reyes-Saldana H, Espitia S, Yuskin D, et al. Lorcaserin, a novel selective human 5-Hydroxytryptamine(2C) agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther 2008;325(2):577–87.
  • Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. New Engl J Med 2010;363(3):245–56.
  • Bloom SR, Kuhajda FP, Laher I, Pi-Sunyer X, Ronnett GV, Tan TM, et al. The obesity epidemic: pharmacological challenges. Mol Intervent 2008;8(2):82–98.
  • Halford JC, Boyland EJ, Blundell JE, Kirkham TC, Harrold JA. Pharmacological management of appetite expression in obesity. Nat Rev Endocrinol 2010;6(5):255–69.
  • Moller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 2008;47(4):171–82.
  • Korhonen H, Pihlanto A. Food-derived bioactive peptides–opportunities for designing future foods. Curr Pharm Des 2003;9(16):1297–308.
  • Phelan M, Kerins D. The potential role of milk-derived peptides in cardiovascular disease. Food Funct 2011;2(3–4):153–67.
  • D'Orazio N, Gammone MA, Gemello E, De Girolamo M, Cusenza S, Riccioni G. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar Drugs 2012;10(4):812–33.
  • Belarbi E, Gomez AC, Chisti Y, Camacho FG, Grima EM. Producing drugs from marine sponges. Biotechnol Adv 2003;21(7):585–98.
  • Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Critic Rev Food Sci Nutr 2008;48(5):430–41.
  • González-Castejón M, Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol Res 2011;64(5):438–55.
  • Yun JW. Possible anti-obesity therapeutics from nature–a review. Phytochemistry 2010;71(14–15):1625–41.
  • Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 2003;78(3):517s–20s.
  • Schieber A, Stintzing FC, Carle R. By-products of plant food processing as a source of functional compounds – recent developments. Trends Food Sci Tech 2001;12(11):401–413.
  • FAO/WHO. Fruit and vegetables for health. Kobe, Japan: Food and Agriculture Organization of the United Nations/World Health Organization; 2004.
  • Calixto J. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res 2000;33(2):179–89.
  • O'Hara M, Kiefer D, Farrell K, Kemper K. A review of 12 commonly used medicinal herbs. Arch Fam Med 1998;7(6):523–36.
  • Abebe W. Herbal medication: potential for adverse interactions with analgesic drugs. J Clinl Pharm Ther 2002;27(6):391–401.
  • Ernst E. The risk-benefit profile of commonly used herbal therapies: Ginkgo, St. John's Wort, Ginseng, Echinacea, Saw Palmetto, and Kava. Ann Int Med 2002;136(1):42–53.
  • Sergent T, Vanderstraeten J, Winand J, Beguin P, Schneider Y-J. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem 2012;135(1):68–73.
  • Vermaak I, Viljoen AM, Hamman JH. Natural products in anti-obesity therapy. Nat Prod Rep 2011;28(9):1493–533.
  • Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 2006;53(6):482–91.
  • Ono Y, Hattori E, Fukaya Y, Imai S, Ohizumi Y. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J Ethnopharmacol 2006;106(2):238–44.
  • Ohkoshi E, Miyazaki H, Shindo K, Watanabe H, Yoshida A, Yajima H. Constituents from the leaves of Nelumbo nucifera stimulate lipolysis in the white adipose tissue of mice. Planta Med 2007;73(12):1255–9.
  • Lemaure B, Touche A, Zbinden I, Moulin J, Courtois D, Mace K, et al. Administration of Cyperus rotundus tubers extract prevents weight gain in obese Zucker rats. Phytother Res 2007;21(8):724–30.
  • Mercader J, Wanecq E, Chen J, Carpéné C. Isopropylnorsynephrine is a stronger lipolytic agent in human adipocytes than synephrine and other amines present in Citrus aurantium. J Physiol Biochem 2011;67(3):443–52.
  • Park SH, Ko SK, Chung SH. Euonymus alatus prevents the hyperglycemia and hyperlipidemia induced by high-fat diet in ICR mice. J Ethnopharmacol 2005;102(3):326–35.
  • Lee J, Chae K, Ha J, Park BY, Lee HS, Jeong S, et al. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaris in high-fat diet-induced obese mice. J Ethnopharmacol 2008;115(2):263–70.
  • Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001;414(6865):821–7.
  • Huang TH, Yang Q, Harada M, Uberai J, Radford J, Li GQ, et al. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: modulation of cardiac PPAR-alpha-mediated transcription of fatty acid metabolic genes. Toxicol Appl Pharmacol 2006;210(1–2):78–85.
  • Huang TH, Peng G, Li GQ, Yamahara J, Roufogalis BD, Li Y. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha. Toxicol Appl Pharmacol 2006;210(3):225–35.
  • Chuang CC, Martinez K, Xie GX, Kennedy A, Bumrungpert A, Overman A, et al. Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-alpha-mediated inflammation and insulin resistance in primary human adipocytes. Am J Clin Nutr 2010;92(6):1511–21.
  • Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 2008;134(3):405–15.
  • Murase T, Misawa K, Haramizu S, Hase T. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol 2009;78(1):78–84.
  • Nguyen PH, Le TVT, Kang HW, Chae J, Kim SK, Kwon K-i, et al. AMP-activated protein kinase (AMPK) activators from Myristica fragrans (nutmeg) and their anti-obesity effect. Bioorgan Med Chem Lett 2010;20(14):4128–31.
  • Kim SJ, Jung JY, Kim HW, Park T. Anti-obesity effects of Juniperus chinensis extract are associated with increased AMP-activated protein kinase expression and phosphorylation in the visceral adipose tissue of rats. Biol Pharm Bull 2008;31(7):1415–21.
  • Yuan H-D, Kim S-J, Quan H-Y, Huang B, Chung S-H. Ginseng leaf extract prevents high fat diet-induced hyperglycemia and hyperlipidemia through AMPK activation. J Ginseng Res2010;34(4):369–75.
  • Lin C-L, Huang H-C, Lin J-K. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. J Lipid Res 2007;48(11):2334–43.
  • Yoshikawa M, Shimoda H, Nishida N, Takada M, Matsuda H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J Nutr 2002;132(7):1819–24.
  • Mukherjee M. Human digestive and metabolic lipases – a brief review. J Mol Catal B-Enzym 2003;22(5–6):369–76.
  • Thomson ABR, DePover A, Keelan M, JarockaCyrta E, Clandinin MT. Inhibition of lipid absorption as an approach to the treatment of obesity. Method Enzymol 1997;286:3–44.
  • Yoshizumi K, Hirano K, Ando H, Hirai Y, Ida Y, Tsuji T, et al. Lupane-type saponins from leaves of Acanthopanax sessiliflorus and their inhibitory activity on pancreatic lipase. J Agric Food Chem 2006;54(2):335–41.
  • Moreno DA, Ilic N, Poulev A, Raskin I. Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters. Life Sci 2006;78(24):2797–803.
  • Moreno DA, Ilic N, Poulev A, Brasaemle DL, Fried SK, Raskin I. Inhibitory effects of grape seed extract on lipases. Nutrition 2003;19(10):876–9.
  • Sahib NG, Hamid AA, Kitts D, Purnama M, Saari N, Abas F. The effects of Morinda citrifolia, Momordica charantia and Centella asiatica extracts on lipoprotein lipase and 3T3-L1 preadipocytes. J Food Biochem 2011;35(4):1186–205.
  • Kim HK, Della-Fera M, Lin J, Baile CA. Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. J Nutr 2006;136(12):2965–9.
  • Rayalam S, Della-Fera MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem 2008;19(11):717–26.
  • Jung SA, Choi M, Kim S, Yu R, Park T. Cinchonine prevents high-fat-diet-induced obesity through downregulation of adipogenesis and adipose inflammation. PPAR Res 2012;2012:541204.
  • Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998;78(3):783–809.
  • Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 2006;50(2):176–87.
  • Ratnawati R, Indra MR, Satuman A. Epigallocatechin gallate of greentea inhibits proliferation, differentiationand TNF-α in the primary human visceral preadipocytes culture. Majalah Ilmu Faal Indonesia 2007;6(3):160–8.
  • Juhel C, Armand M, Pafumi Y, Rosier C, Vandermander J, Lairon D. Green tea extract (AR25 (R)) inhibits lipolysis of triglycerides in gastric and duodenal medium in vitro. J Nutr Biochem 2000;11(1):45–51.
  • Dulloo AG. Modulation of obesity by a green tea catechin. Am J Clin Nutr 2000;72(5):1233–4.
  • Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes 2000;24(2):252–8.
  • Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I. Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord 2002;26(11):1459–64.
  • Liu HS, Chen YH, Hung PF, Kao YH. Inhibitory effect of green tea (-)- epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am J Physiol-Endoc M 2006;290(2):E273–81.
  • Zheng GD, Sayama K, Okubo T, Juneja LR, Oguni I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 2004;18(1):55–62.
  • Ardevol A, Blade C, Salvado MJ, Arola L. Changes in lipolysis and hormone-sensitive lipase expression caused by procyanidins in 3T3-L1 adipocytes. Int J Obes Relat Metab Disord 2000;24(3):319–24.
  • Kim SH, Park HS, Lee MS, Cho YJ, Kim YS, Hwang JT, et al. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells. Biochem Biophys Res Commun 2008;372(1):108–113.
  • Pinent M, Blade MC, Salvado MJ, Arola L, Hackl H, Quackenbush J, et al. Grape-seed derived procyanidins interfere with adipogenesis of 3T3-L1 cells at the onset of differentiation. Int J Obes 2005;29(8):934–41.
  • Pinent M, Blade MC, Salvado MJ, Arola L, Ardevol A. Intracellular mediators of procyanidin-induced lipolysis in 3T3-L1 adipocytes. J Agric Food chem 2005;53(2):262–6.
  • Mercader J, Palou A, Bonet ML. Resveratrol enhances fatty acid oxidation capacity and reduces resistin and Retinol-Binding Protein 4 expression in white adipocytes. J Nutr Biochem 2011;22(9):828–34.
  • Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 2013;24(4):613–23.
  • Ejaz A, Wu DY, Kwan P, Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 2009;139(5):919–25.
  • Arcari DP, Santos JC, Gambero A, Ribeiro ML. The in vitro and in vivo effects of yerba mate (Ilex paraguariensis) extract on adipogenesis. Food Chem 2013;141(2):809–15.
  • van Heerden FR. Hoodia gordonii: a natural appetite suppressant. J Ethnopharmacol 2008;119(3):434–7.
  • Habeck M. A succulent cure to end obesity. Drug Discov today 2002;7(5):280–1.
  • MacLean DB, Luo LG. Increased ATP content/production in the hypothalamus may be a signal for energy-sensing of satiety: studies of the anorectic mechanism of a plant steroidal glycoside. Brain Res 2004;1020(1–2):1–11.
  • Phytopharm. Successful completion of proof of clinical study of p57 for obesity. 2007. Press release, 5 December. www.phytopharm.com/news/newsreleases/?page=7&id=1749. Accessed 5 April 2008.
  • Lee RA, Balick MJ. Indigenous use of Hoodia gordonii and appetite suppression. Explore (NY) 2007;3(4):404–6.
  • Soni MG, Burdock GA, Preuss HG, Stohs SJ, Ohia SE, Bagchi D. Safety assessment of (-)-hydroxycitric acid and Super CitriMax (R), a novel calcium/potassium salt. Food Chem Toxicol 2004;42(9):1513–29.
  • Asghar M, Monjok E, Kouamou G, Ohia SE, Bagchi D, Lokhandwala MF. Super CitriMax (HCA-SX) attenuates increases in oxidative stress, inflammation, insulin resistance, and body weight in developing obese Zucker rats. Mol Cell Biochem 2007;304(1–2):93–9.
  • Shimomura I, Tokunaga K, Jiao S, Funahashi T, Keno Y, Kobatake T, et al. Marked enhancement of acyl-CoA synthetase activity and mRNA, paralleled to lipoprotein lipase mRNA, in adipose tissues of Zucker obese rats (fa/fa). Biochim Biophys Acta 1992;1124(2):112–8.
  • Saengsirisuwan V, Perez FR, Sloniger JA, Maier T, Henriksen EJ. Interactions of exercise training and alpha-lipoic acid on insulin signaling in skeletal muscle of obese Zucker rats. Am J Physiol Endocrinol Metab 2004;287(3):E529–536.
  • Banday AA, Marwaha A, Tallam LS, Lokhandwala MF. Tempol reduces oxidative stress, improves insulin sensitivity, decreases renal dopamine D1 receptor hyperphosphorylation, and restores D1 receptor-G-protein coupling and function in obese Zucker rats. Diabetes 2005;54(7):2219–26.
  • Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK. Chemistry and biochemistry of (–)-hydroxycitric acid from Garcinia. J Agric Food Chem 2002;50(1):10–22.
  • Oben JE, Enyegue DM, Fomekong GI, Soukontoua YB, Agbor GA. The effect of Cissus quadrangularis (CQR-300) and a Cissus formulation (CORE) on obesity and obesity-induced oxidative stress. Lipids Health Dis 2007;6:4
  • Murray CDR, Le Roux CW, Emmanuel AV, Halket JM, Przyborowska AM, Kamm MA, et al. The effect of Khat (Catha edulis) as an appetite suppressant is independent of ghrelin and PYY secretion. Appetite 2008;51(3):747–50.
  • Russek M, Stevenso Ja, Mogenson GJ. Anorexigenic Effects of Adrenaline Amphetamine and Fms 1a. Can J Physiol Pharmacol 1968;46(4):635−638.
  • Russek M, Vega C, Barrera J, Sotomora LM, Lanzagorta A, Racotta R. Anorexia elicited by different catecholamines in rats. Appetite 1987;9(2):119–26.
  • Hamao M, Matsuda H, Nakamura S, Nakashima S, Semura S, Maekubo S, et al. Anti-obesity effects of the methanolic extract and chakasaponins from the flower buds of Camellia sinensis in mice. Bioorgan Med Chem 2011;19(20):6033–41.
  • Kao YH, Hiipakka RA, Liao S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000;141(3):980–7.
  • Carai MA, Fantini N, Loi B, Colombo G, Riva A, Morazzoni P. Potential efficacy of preparations derived from Phaseolus vulgaris in the control of appetite, energy intake, and carbohydrate metabolism. Diab Metabol Syndr Obes, Targets Therapy 2009;2:145–53.
  • Kuriyan R, Raj T, Srinivas SK, Vaz M, Rajendran R, Kurpad AV. Effect of Caralluma fimbriata extract on appetite, food intake and anthropometry in adult Indian men and women. Appetite 2007;48(3):338–44.
  • McCrory MA, Hamaker BR, Lovejoy JC, Eichelsdoerfer PE. Pulse consumption, satiety, and weigh management. Adv Nutr 2010;1(1):17–30.
  • Yuliana ND, Korthout H, Wijaya CH, Kim HK, Verpoorte R. Plant-derived food ingredients for stimulation of energy expenditure. Crit Rev Food Sci Nutr 2014;54(3):373–388.
  • Ricquier D. Respiration uncoupling and metabolism in the control of energy expenditure. P Nutr Soc 2005;64(1):47–52.
  • Inokuma K, Okamatsu-Ogura Y, Omachi A, Matsushita Y, Kimura K, Yamashita H, et al. Indispensable role of mitochondrial UCP1 for antiobesity effect of beta3-adrenergic stimulation. Am J Physiol Endocrinol Metabol 2006;290(5):E1014–1021.
  • Maeda H, Hosokawa M, Sashima T, Miyashita K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Agric Food Chem 2007;55(19):7701–6.
  • Jeon SM, Kim HJ, Woo MN, Lee MK, Shin YC, Park YB, et al. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol J 2010;5(9):961–9.
  • Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Physiother Res 2008;22(10):1367–71.
  • Kim HK, Nelson-Dooley C, Della-Fera MA, Yang JY, Zhang W, Duan J, et al. Genistein decreases food intake, body weight, and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice. J Nutr 2006;136(2):409–14.
  • Fisler JS, Warden CH. Uncoupling proteins, dietary fat and the metabolic syndrome. Nutr Metab 2006;3–38.
  • Gong DW, He Y, Karas M, Reitman M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem 1997;272(39):24129–32.
  • Yoon SS, Rhee YH, Lee HJ, Lee EO, Lee MH, Ahn KS, et al. Uncoupled protein 3 and p38 signal pathways are involved in anti-obesity activity of Solanum tuberosum L. cv. Bora Valley. J Ethnopharmacol 2008;118(3):396–404.
  • Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat Genet 2000;25(1):87–90.
  • Ko JS, Ryu SY, Kim YS, Chung MY, Kang JS, Rho MC, et al. Inhibitory activity of diacylglycerol acyltransferase by tanshinones from the root of Salvia miltiorrhiza. Arch Pharmacol Res 2002;25(4):446–8.
  • Dulloo A, Miller D. The thermogenic properties of ephedrine/methylxanthine mixtures: animal studies. Am J Clin Nutr 1986;43(3):388–94.
  • Diepvens K, Westerterp KR, Westerterp-Plantenga MS. Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Physiol-Reg I 2007;292(1):R77–85.
  • Pasquali R, Baraldi G, Cesari M, Melchionda N, Zamboni M, Stefanini C, et al. A controlled trial using ephedrine in the treatment of obesity. Int J Obes 1985;9(2):93–8.
  • Astrup A, Breum L, Toubro S, Hein P, Quaade F. The effect and safety of an ephedrine caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy restricted diet – a double-blind trial. Int J Obes 1992;16(4):269–77.
  • Diepvens K, Kovacs EMR, Nijs IMT, Vogels N, Westerterp-Plantenga MS. Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Brit J Nutr 2005;94(6):1026–34.
  • Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem 2011;22(1):1–7.
  • Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 1999;70(6):1040–5.
  • Boschmann M, Thielecke F. The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J Am Coll Nutr 2007;26(4):389s–95s.
  • Borchardt RT, Huber JA. Catechol O-methyltransferase. 5. Structure-activity relationships for inhibition by flavonoids. J Med Chem 1975;18(1):120–2.
  • Chantre P, Lairon D. Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 2002;9(1):3–8.
  • Yang TTC, Koo MWL. Inhibitory effect of Chinese green tea on endothelial cell-induced LDL oxidation. Atherosclerosis 2000;148(1):67–73.
  • Venables MC, Hulston CJ, Cox HR, Jeukendrup AE. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr 2008;87(3):778–84.
  • Zhang ZF, Li Q, Liang J, Dai XQ, Ding Y, Wang JB, et al. Epigallocatechin-3-O-gallate (EGCG) protects the insulin sensitivity in rat L6 muscle cells exposed to dexamethasone condition. Phytomedicine 2010;17(1):14–8.
  • Ashida H, Furuyashiki T, Nagayasu H, Bessho H, Sakakibara H, Hashimoto T, et al. Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors. Biofactors 2004;22(1–4):135–40.
  • Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS. The major green tea polyphenol, (–)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat–fed mice. J Nutr 2008;138(9):1677–83.
  • Hill AM, Coates AM, Buckley JD, Ross R, Thielecke F, Howe PR. Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr 2007;26(4):396S–402S.
  • Westerterp-Plantenga MS, Lejeune MPGM, Kovacs EMR. Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res 2005;13(7):1195–204.
  • Berube-Parent S, Pelletier C, Dore J, Tremblay A. Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 hours energy expenditure and fat oxidation in men. Brit J Nutr 2005;94(3):432–6.
  • Westerterp-Plantenga M, Diepvens K, Joosen A, Bérubé-Parent S, Tremblay A. Metabolic effects of spices, teas, and caffeine. Physiol Behav 2006;89(1):85–91.
  • Kazemipoor M, Radzi CWJWM, Cordell GA, Yaze I. Potential of traditional medicinal plants for treating obesity: a review. International Conference on Nutrition and Food Sciences. IPCBEE, Singapore. 2012;39(1):1–6.
  • Research TM. Probiotics market by products (functional foods, dietary supplements, specialty nutrients, animal feed), applications (regular, therapeutic, preventive health care) & ingredients (Lactobacilli, Bifidobacteria, Yeast – Global Trends and Forecasts To 2017). 2013 February 11. Report Code: FB 1046. Published by www.marketsandmarkets.com.
  • FAO/WHO. Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Food and Agriculture Organization of the United Nations/World Health Organization; 2001. Amerian Córdoba Park Hotel, Córdoba, Argentina.
  • Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2010;7(9):503–14.
  • Clarke G, Cryan JF, Dinan TG, Quigley EM. Review article: probiotics for the treatment of irritable bowel syndrome–focus on lactic acid bacteria. Aliment Pharmacol Ther 2012;35(4):403–13.
  • Delzenne NM, Neyrinck AM, Backhed F, Cani PD. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 2011;7(11):639–46.
  • Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Brit J Nutr 2010;104( Suppl 2):S1–63.
  • Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: how prebiotic can work? Brit J Nutr 2013;109( Suppl 2):S81–85.
  • Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharma Des 2009;15(13):1546–58.
  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57(6):1470–81.
  • Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58(8):1091–103.
  • Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palu G, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2007;292(2):G518–525.
  • de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol-Gastr L 2010;299(2):G440–8.
  • Reigstad CS, Lunden GO, Felin J, Backhed F. Regulation of serum amyloid A3 (SAA3) in mouse colonic epithelium and adipose tissue by the intestinal microbiota. PloS One 2009;4(6):e5842.
  • Scheja L, Heese B, Zitzer H, Michael MD, Siesky AM, Pospisil H, et al. Acute-phase serum amyloid A as a marker of insulin resistance in mice. Exp Diab Res 2008;2008:230837.
  • Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol 2011;2:94.
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444(7122):1027–31.
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology – Human gut microbes associated with obesity. Nature 2006;444(7122):1022–3.
  • Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004;101(44):15718–23.
  • Turnbaugh P, Bäckhed F, Fulton L, Gordon J. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008;3(4):213–23.
  • Bäckhed F, Manchester J, Semenkovich C, Gordon J. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007;104(3):979–84.
  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005;102(31):11070–5.
  • Ehrlich SD. Probiotics – little evidence for a link to obesity. Nat Rev Microbiol 2009;7(12).
  • Sanz Y, Rastmanesh R, Agostonic C. Understanding the role of gut microbes and probiotics in obesity: How far are we? Pharmacol Res 2013;69(1):144–55.
  • Raoult D. Probiotics and obesity: a link?. Nat Rev Microbiol 2009;7(9):616.
  • Burcelin R, Carcano D, Desreumaux P, Lahtinen S, Rautionen N, Putaala H, et al., Inventors; Danisco A/S (Copenhagen, DK) assignee. Lactic acid bacteria and bifidobacteria for treating endotoxemia. United States PATENTSCOPE 2011 Pub. No.: WO/2011/013106.
  • Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 2010;64(6):636–43.
  • Kadooka Y, Ogawa A, Ikuyama K, Sato M. The probiotic Lactobacillus gasseri SBT2055 inhibits enlargement of visceral adipocytes and upregulation of serum soluble adhesion molecule (sICAM-1) in rats. Int Dairy J 2011;21(9):623–7.
  • Sato M, Uzu K, Yoshida T, Hamad EM, Kawakami H, Matsuyama H, et al. Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats. Brit J Nutr 2008;99(5):1013–7.
  • Hamad EM, Sato M, Uzu K, Yoshida T, Higashi S, Kawakami H, et al. Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. Brit J Nutr 2009;101(5):716–24.
  • Kang JH, Yun SI, Park HO. Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J Microbiol 2010;48(5):712–4.
  • Kondo S, Xiao JZ, Satoh T, Odamaki T, Takahashi S, Sugahara H, et al. Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem 2010;74(8):1656–61.
  • Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, et al. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 2006;1761(7):736–44.
  • Lee K, Paek K, Lee HY, Park JH, Lee Y. Antiobesity effect of trans-10,cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J Appl Microbiol 2007;103(4):1140–6.
  • Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013;110(22):9066–71.
  • Cani PD, Delzenne NM. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 2009;9(6):737–43.
  • Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008;87(3):534–8.
  • Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124(4):837–48.
  • Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010;18(1):190–5.
  • Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 2010;92(5):1023–30.
  • Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 2010;61(1):69–78.
  • Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007;50(11):2374–83.
  • Dewulf EM, Cani PD, Neyrinck AM, Possemiers S, Van Holle A, Muccioli GG, et al. Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARgamma-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 2011;22(8):712–22.
  • Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Brit J Nutr 2004;92(3):521–6.
  • Cani PD, Neyrinck AM, Maton N, Delzenne NM. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes Res 2005;13(6):1000–7.
  • Cani PD, Hoste S, Guiot Y, Delzenne NM. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Brit J Nutr 2007;98(1):32–7.
  • Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 2006;55(5):1484–90.
  • Gutzwiller JP, Drewe J, Goke B, Schmidt H, Rohrer B, Lareida J, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999;276(5 Pt 2):R1541–1544.
  • Muccioli GG, Naslain D, Backhed F, Reigstad CS, Lambert DM, Delzenne NM, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010;6:392.
  • Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 2009;89(6):1751–9.
  • Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009;90(5):1236–43.
  • Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 2010;59(12):3049–57.
  • Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Brit J Nutr 2010;104(1):83–92.
  • Babio N, Bullo M, Salas-Salvado J. Mediterranean diet and metabolic syndrome: the evidence. Public Health Nutr 2009;12(9A):1607–17.
  • Ebringer L, Ferencik M, Krajcovic J. Beneficial health effects of milk and fermented dairy products. Folia Microbiol 2008;53(5):378–94.
  • Nagpal R, Behare P, Rana R, Kumar A, Kumar M, Arora S, et al. Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct 2011;2(1):18–27.
  • Hernandez-Ledesma B, Miguel M, Amigo L, Aleixandre MA, Recio I. Effect of simulated gastrointestinal digestion on the antihypertensive properties of synthetic beta-lactoglobulin peptide sequences. J Dairy Res 2007;74(3):336–9.
  • Hernandez-Ledesma B, Recio I, Amigo L. Beta-lactoglobulin as source of bioactive peptides. Amino Acids 2008;35(2):257–65.
  • Fosset S, Tomé D. Dietary protein-derived peptides with antithrombotic activity. Bull Int Dairy Federation 2000;353:65–8.
  • Nagaoka S, Futamura Y, Miwa K, Awano T, Yamauchi K, Kanamaru Y, et al. Identification of novel hypocholesterolemic peptide derived from bovine milk beta-lactoglobulin. Abstr Pap Am Chem S 2001;221:pU38.
  • Kitts DD, Weiler K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharma Des 2003;9(16):1309–23.
  • Aziz A, Anderson GH. Exendin-4, a GLP-1 receptor agonist, interacts with proteins and their products of digestion to suppress food intake in rats. J Nutr 2003;133(7):2326–30.
  • Hall WL, Millward DJ, Long SJ, Morgan LM. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Brit J Nutr 2003;89(2):239–48.
  • Krissansen GW. Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr 2007;26(6):713S–23S.
  • Luhovyy BL, Akhavan T, Anderson GH. Whey proteins in the regulation of food intake and satiety. J Am Coll Nutr 2007;26(6):704S–12S.
  • Satake M, Enjoh M, Nakamura Y, Takano T, Kawamura Y, Arai S, et al. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Biosci Biotechnol Biochem 2002;66(2):378–84.
  • Figlewicz DP, Nadzan AM, Sipols AJ, Green PK, Liddle RA, Porte D Jr., et al. Intraventricular CCK-8 reduces single meal size in the baboon by interaction with type-A CCK receptors. Am J Physiol 1992;263(4 Pt 2):R863–867.
  • Bowen J, Noakes M, Trenerry C, Clifton PM. Energy intake, ghrelin, and cholecystokinin after different carbohydrate and protein preloads in overweight men. J Clin Endocrinol Metabol 2006;91(4):1477–83.
  • le Roux CW, Bloom SR. Peptide YY. appetite and food intake. Proc Nutr Soc 2005;64(2):213–6.
  • Calbet JA, Holst JJ. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr 2004;43(3):127–39.
  • Williams DL, Cummings DE. Regulation of ghrelin in physiologic and pathophysiologic states. J Nutr 2005;135(5):1320–5.
  • Bowen J, Noakes M, Clifton PM. Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake. J Clin Endocrinol Metabol 2006;91(8):2913–9.
  • Baer DJ, Stote KS, Paul DR, Harris GK, Rumpler WV, Clevidence BA. Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J Nutr 2011;141(8):1489–94.
  • Moreno-Navarrete JM, Ortega FJ, Bassols J, Castro A, Ricart W, Fernandez-Real JM. Association of circulating lactoferrin concentration and 2 nonsynonymous LTF gene polymorphisms with dyslipidemia in men depends on glucose-tolerance status. Clin Chem 2008;54(2):301–09.
  • Moreno-Navarrete JM, Ortega FJ, Bassols J, Ricart W, Fernandez-Real JM. Decreased circulating lactoferrin in insulin resistance and altered glucose tolerance as a possible marker of neutrophil dysfunction in type 2 diabetes. J Clin Endocr Metab 2009;94(10):4036–44.
  • Ono T, Murakoshi M, Suzuki N, Iida N, Ohdera M, Iigo M, et al. Potent anti-obesity effect of enteric-coated lactoferrin: decrease in visceral fat accumulation in Japanese men and women with abdominal obesity after 8-week administration of enteric-coated lactoferrin tablets. Brit J Nutr 2010;104(11):1688–95.
  • Nieuwenhuizen AG, Hochstenbach-Waelen A, Veldhorst MA, Westerterp KR, Engelen MP, Brummer RJ, et al. Acute effects of breakfasts containing alpha-lactalbumin, or gelatin with or without added tryptophan, on hunger, 'satiety' hormones and amino acid profiles. Brit J Nutr 2009;101(12):1859–66.
  • Hursel R, van der Zee L, Westerterp-Plantenga MS. Effects of a breakfast yoghurt, with additional total whey protein or caseinomacropeptide-depleted alpha-lactalbumin-enriched whey protein, on diet-induced thermogenesis and appetite suppression. Brit J Nutr 2010;103(5):775–80.
  • Pilvi TK, Harala S, Korpela R, Mervaala EM. Effects of high-calcium diets with different whey proteins on weight loss and weight regain in high-fat-fed C57BL/6J mice. Brit J Nutr 2009;102(3):337–41.
  • Orosco M, Rouch C, Beslot F, Feurte S, Regnault A, Dauge V. Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat. Behav Brain Res 2004;148(1–2):1–10.
  • Pihlanto-Leppala A, Koskinen P, Piilola K, Tupasela T, Korhonen H. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J Dairy Res 2000;67(1):53–64.
  • Bruck WM, Graverholt G, Gibson GR. Use of batch culture and a two-stage continuous culture system to study the effect of supplemental alpha-lactalbumin and glycomacropeptide on mixed populations of human gut bacteria. FEMS Microbiol Ecol 2002;41(3):231–7.
  • Nurminen ML, Sipola M, Kaarto H, Pihlanto-Leppala A, Piilola K, Korpela R, et al. Alpha-lactorphin lowers blood pressure measured by radiotelemetry in normotensive and spontaneously hypertensive rats. Life Sci 2000;66(16):1535–43.
  • Lonnerdal B, Lien EL. Nutritional and physiologic significance of alpha-lactalbumin in infants. Nutr Rev 2003;61(9):295–305.
  • Froetschel MA, Azain MJ, Edwards GL, Barb CR, Amos HE. Opioid and cholecystokinin antagonists alleviate gastric inhibition of food intake by premeal loads of casein in meal-fed rats. J Nutr 2001;131(12):3270–6.
  • Nongonierma AB, Schellekens H, Dinan TG, Cryan JF, FitzGerald RJ. Milk protein hydrolysates activate 5-HT2C serotonin receptors: influence of the starting substrate and isolation of bioactive fractions. Food Funct 2013;4(5):728–737.
  • Thomas AP, Dunn TN, Drayton JB, Oort PJ, Adams SH. A high calcium diet containing nonfat dry milk reduces weight gain and associated adipose tissue inflammation in diet-induced obese mice when compared to high calcium alone. Nutr Metab 2012;9:3.
  • Christensen R, Lorenzen JK, Svith CR, Bartels EM, Melanson EL, Saris WH, et al. Effect of calcium from dairy and dietary supplements on faecal fat excretion: a meta-analysis of randomized controlled trials. Obes Rev 2009;10(4):475–86.
  • Buckley JD, Howe PRC. Long-chain omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity-a review. Nutrients 2010;2(12):1212–30.
  • Harris WS. Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res 1989;30(6):785–807.
  • Harris WS. n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 1997;65( 5 Suppl):1645S–54S.
  • Hill JO, Peters JC, Lin D, Yakubu F, Greene H, Swift L. Lipid-accumulation and body-fat distribution is influenced by type of dietary-fat fed to rats. Int J Obes 1993;17(4):223–36.
  • Ikemoto S, Takahashi M, Tsunoda N, Maruyama K, Itakura H, Ezaki O. High-fat diet-induced hyperglycemia and obesity in mice: Differential effects of dietary oils. Metab Clin Exp 1996;45(12):1539–46.
  • Xu J, Nakamura MT, Cho HP, Clarke SD. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids – a mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J Biol Chem 1999;274(33):23577–83.
  • Kim HJ, Takahashi M, Ezaki O. Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver – A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J Biol Chem 1999;274(36):25892–8.
  • Yahagi N, Shimano H, Hasty AH, Amemiya-Kudo M, Okazaki H, Tamura Y, et al. A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J Biol Chem 1999;274(50):35840–4.
  • Nakatani T, Kim HJ, Kaburagi Y, Yasuda K, Ezaki O. A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: relationship to anti-obesity. J Lipid Res 2003;44(2):369–79.
  • Mori T, Kondo H, Hase T, Tokimitsu I, Murase T. Dietary fish oil upregulates intestinal lipid metabolism and reduces body weight gain in C57BL/6J mice. J Nutr 2007;137(12):2629–34.
  • Kim M-S, Park J-Y, Namkoong C, Jang P-G, Ryu J-W, Song H-S, et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 2004;10(7):727–33.
  • West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 1998;275(3 Pt 2):R667–672.
  • Terpstra AHM, Beynen AC, Everts H, Kocsis S, Katan MB, Zock PL. The decrease in body fat in mice fed conjugated linoleic acid is due to increases in energy expenditure and energy loss in the excreta. J Nutr 2002;132(5):940–5.
  • Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW. Effect of conjugated linoleic acid on body composition in mice. Lipids 1997;32(8):853–8.
  • Delany JP, Blohm F, Truett AA, Scimeca JA, West DB. Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am J Physiol-Reg I 1999;276(4):R1172–9.
  • Takahashi Y, Kushiro M, Shinohara K, Ide T. Dietary conjugated linoleic acid reduces body fat mass and affects gene expression of proteins regulating energy metabolism in mice. Comp Biochem Phys B 2002;133(3):395–404.
  • Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW. Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 1999;34(3):235–41.
  • Kamphuis MMJW, Lejeune MPGM, Saris WHM, Westerterp-Plantenga MS. Effect of conjugated linoleic acid supplementation after weight loss on appetite and food intake in overweight subjects. European J Clin Nutr 2003;57(10):1268–74.
  • Ngo DH, Vo TS, Ngo DN, Wijesekara I, Kim SK. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int J Biol Macromol 2012;51(4):378–83.
  • Cudennec B, Ravallec-Ple R, Courois E, Fouchereau-Peron M. Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells. Food Chem 2008;111(4):970–5.
  • Schellekens H, Dinan TG, Cryan JF. Lean mean fat reducing “ghrelin” machine: hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology 2010;58(1):2–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.