Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 19, 2016 - Issue 6
526
Views
23
CrossRef citations to date
0
Altmetric
Original research paper

Neuroprotective effects of fermented soybean products (Cheonggukjang) manufactured by mixed culture of Bacillus subtilis MC31 and Lactobacillus sakei 383 on trimethyltin-induced cognitive defects mice

, , , , , , , & show all

References

  • Anderson RL, Wolf WJ. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J Nutr 1995;125:581S–8S.
  • Lee YB, Lee HJ, Kim CH, Lee SB, Sohn HS. Soy isoflavones and Soyasaponins: characteristics and physiological functions. Agric Chem Biotechnol 2005;45:49–57.
  • Cho KM, Hong SY, Math RK, Lee JH, Kambiranda DM, Kim JM, et al. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of Cheonggukjang by Bacillus pumilus HY1. Food Chem 2009;114:413–9. doi: 10.1016/j.foodchem.2008.09.056
  • Su CL, Wu CJ, Chen FN, Wang BJ, Shen SR, Won SJ. Supernatant of bacterial fermented soybean induces apoptosis of human hepatocellular carcinoma Hep 3B cells via activation of caspase 8 and mitochondria. Food Chem Toxicol 2004;45:303–14. doi: 10.1016/j.fct.2006.07.031
  • Lee JJ, Lee DS, Kim HB. Fermentation patterns of Chungkookjang and Kanjang by Bacillus licheniformis B1. Kor J Microbiol 1999;35:296–301.
  • Cho KM, Lee JH, Yun HD, Ahn BY, Kim H, Seo WT. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheongukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. Food Comp Anal 2011;24:402–10. doi: 10.1016/j.jfca.2010.12.015
  • Wuttke W, Jarry H, Seidlová-Wuttke D. Isoflavones-safe food additives or dangerous drugs? Ageing Res Rev 2007;6:150–88. doi: 10.1016/j.arr.2007.05.001
  • Lee YB, Lee HJ, Sohn HS. Soy isoflavones and cognitive function. J Nutri Biochem 2005;16:641–9. doi: 10.1016/j.jnutbio.2005.06.010
  • He M, Liu MY, Wang S, Tang QS, Yao WF, Zhao HS, et al. Research on EGCG improving the degenerative changes of the brain in AD model mice induced with chemical drugs. Zhong Yao Cai 2012;35:1641–4.
  • Xi YD, Li XY, Ding J, Yu HL, Ma WW, Yuan LH, et al. Soy isoflavone alleviates Aβ1-42-induced impairment of learning and memory ability through the regulation of RAGE/LRP-1 in neuronal and vascular tissue. Curr Neurovasc Res 2013;10:144–56. doi: 10.2174/1567202611310020007
  • Feng JF, He LL, Yuan LH, Yu HL, Ma WW, Yang Y, et al. Antagonizing effects of soybean isoflavones on β-amyloid peptide-induced oxidative damage in neuron mitochondria of rats. Basic Clin Pharmacol Toxicol 2012;111:248–53.
  • Trieu VN, Dong Y, Zheng Y, Uckun FM. In vivo antioxidant activity of genistein in a murine model of singlet oxygen-induced cerebral stroke. Radiat Res 1999;152:508–16. doi: 10.2307/3580147
  • Trieu VN, Uckun FM. Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem Biophys Res Commun 1999;258:685–8. doi: 10.1006/bbrc.1999.0577
  • Hayashi A, Weinberger AW, Kim HC, de Juan EJR. Genistein, a protein tyrosine kinase inhibitor, ameliorates retinal degeneration after ischemia-reperfusion injury in rat. Invest Ophthalmol Vis Sci 1999;38:1193–202.
  • Lee YJ, Kim JE, Kwak MH, Go J, Son HJ, Kim DS, et al. In vitro and in vivo study of effects of fermented soybean product (chungkookjang) on NGF secretion ability and NGF receptor signaling pathway. Lab Anim Res 2013;29:113–26. doi: 10.5625/lar.2013.29.2.113
  • Hwang IS, Kim JE, Lee YJ, Kwak MH, Lee HG, Kim HS, et al. Growth sensitivity in the epiphyseal growth plate, liver and muscle of SD rats is significantly enhanced by treatment with a fermented soybean product (cheonggukjang) through stimulation of growth hormone secretion. Mol Med Rep 2013;9:166–72.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54. doi: 10.1016/0003-2697(76)90527-3
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Biochem 1956;28:350–6.
  • Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol 1999;299:152–78. doi: 10.1016/S0076-6879(99)99017-1
  • Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem 2005;91:571–7. doi: 10.1016/j.foodchem.2004.10.006
  • Zheng J, Jin Y, Row KH. Analysis of isoflavones from Korean and Chinese soybean and processed products by HPLC. J Korean Chem Soc 2005;49:349–54. doi: 10.5012/jkcs.2005.49.4.349
  • Choi YH, Lim H, Heo MY, Kwon DY, Kim HP. Anti-inflammatory activity of the ethanol extract of Chungkukjang, Korean fermented bean: 5-lipoxygenase inhibition. J Med Food 2008;11:539–43. doi: 10.1089/jmf.2007.0125
  • Shin SK, Kwon JH, Jeong YJ, Jeon SM, Choi JY, Choi MS. Supplementation of cheonggukjang and red ginseng cheonggukjang can improve plasma lipid profile and fasting blood glucose concentration in subjects with impaired fasting glucose. J Med Food 2011;14:108–13. doi: 10.1089/jmf.2009.1366
  • Fujiwara H, Takayama S, Iwasaki K, Tabuchi M, Yamaguchi T, Sekiguchi K, et al. Yokukansan, a traditional Japanese medicine, ameliorates memory disturbance and abnormal social interaction with anti-aggregation effect of cerebral amyloid β proteins in amyloid precursor protein transgenic mice. Neuroscience 2011;180:305–13. doi: 10.1016/j.neuroscience.2011.01.064
  • Kiyokazu O, Norito N, Chie S, Kei H, Masanori Y, Yukio Y. Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: evaluation using adult mice treated with trimethyltin chloride as a model. J Neurosci Res 2005;82:609–21. doi: 10.1002/jnr.20678
  • Tang YP, Shimizu E, Dube GR, Rampon D, Kerchner FA, Zhuo M, et al. Genetic enhancement of learning and memory in mice. Nature 1999;401:63–9. doi: 10.1038/43432
  • Prajapati KD, Sharma SS, Roy N. Upregulation of albumin expression in focal ischemic rat brain. Brain Res 2010;1327:118–24. doi: 10.1016/j.brainres.2010.02.063
  • Kim J, Choi JN, Kang D, Son GH, Kim YS, Choi HK, et al. Correlation between antioxidative activities and metabolite changes during Cheonggukjang fermentation. Biosci Biotechnol Biochem 2011;75:732–9. doi: 10.1271/bbb.100858
  • Seo HR, Kim JY, Kim JH, Park KY. Identification of Bacillus cereus in a chungkukjang that showed high anticancer effects against AGS human gastric adenocarcinoma cells. J Med Food 2009;12:1274–80. doi: 10.1089/jmf.2009.0081
  • Ko JA, Koo SY, Park HJ. Effects of alginate microencapsulation on the fibrinolytic activity of fermented soybean paste (Cheonggukjang) extract. Food Chem 2008;111:921–4. doi: 10.1016/j.foodchem.2008.05.005
  • Choi HK, Lim YS, Kim YS, Park SY, Lee CH, Hwang KW, et al. Free-radical-scavenging and tyrosinase-inhibition activities of Cheonggukjang samples fermented for various times. Food Chem 2008;106:564–8. doi: 10.1016/j.foodchem.2007.06.024
  • Kim Y, Cho JY, Kuk JH, Moon JH, Cho JI, Kim YC, et al. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr Microbiol 2004;48:312–7. doi: 10.1007/s00284-003-4193-3
  • Lee CH, Youn Y, Song GS, Kim YS. Immunostimulatory effects of traditional Doenjang. J Korean Soc Food Sci Nutr 2011;40:1227–34. doi: 10.3746/jkfn.2011.40.9.1227
  • Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat 2002;200:629–38. doi: 10.1046/j.1469-7580.2002.00064.x
  • Ferruzzi MG, Lobo JK, Janle EM, Cooper B, Simon JE, Wu QL, et al. Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: implications for treatment in Alzheimer's disease. J Alzheimers Dis 2009;18:113–24.
  • Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C. Interaction between flavonoids and the blood–brain barrier: in vitro studies. J Neurochem 2003;85:80–192. doi: 10.1046/j.1471-4159.2003.01652.x
  • Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 2004a;37:1683–93. doi: 10.1016/j.freeradbiomed.2004.08.002
  • Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radic Biol Med 2004b;36:592–604. doi: 10.1016/j.freeradbiomed.2003.11.023
  • Spencer JP. Flavonoids: modulators of brain function?. Br J Nutr 2008; 99 E Suppl 1:ES60–77.
  • Schroeter H, Boyd C, Spencer JPE, Williams RJ, Cadenas E, Rice-Evans C. MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 2002;23:861–80. doi: 10.1016/S0197-4580(02)00075-1
  • Spencer JPE, Rice-Evans C, Williams RJ. Modulation of pro-survival Akt/PKB and ERK1/2 signalling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 2003;278:34783–93. doi: 10.1074/jbc.M305063200
  • Williams RJ, Spencer JPE, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 2004;36:838–49. doi: 10.1016/j.freeradbiomed.2004.01.001
  • Kwon DY, Jang JS, Lee JE, Kim YS, Shin DH, Park S. The isoflavonoid aglycone-rich fractions of Chungkookjang, fermented unsalted soybean, enhance insulin signaling and peroxisome proliferation-activated receptor-gamma activity in vitro. Biofactors 2006;26:245–58. doi: 10.1002/biof.5520260403
  • Nakajima N, Nozaki N, Ishihara K, Ishikawa A, Tsuji H. Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. J Biosci Bioeng 2005;100:685–7. doi: 10.1263/jbb.100.685
  • Balaban CD, O'Callaghan JP, Billingsley ML. Trimethyltin-induced neuronal damage in the rat brain: comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neuronotypic and gliotypic proteins. Neuroscience 1988;26:337–61. doi: 10.1016/0306-4522(88)90150-9
  • Ishida N, Akaike M, Tsutsumi S, Kanai H, Masui A, Sadamatsu M, et al. Trimethyltin syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment. Neuroscience 1997;81:1183–91. doi: 10.1016/S0306-4522(97)00220-0
  • Saary MJ, House RA. Preventable exposure to trimethyltin chloride: a case report. Occup Med 2002;52:227–30. doi: 10.1093/occmed/52.4.227
  • Kim J, Yang M, Kim SH, Kim JC, Wang H, Shin T, et al. Possible role of the glycogen synthase kinase-3 signaling pathway in trimethyltin-induced hippocampal neurodegeneration in mice. PLoS ONE 2013;8:e70356. doi: 10.1371/journal.pone.0070356
  • Ogita K, Nishiyama N, Sugiyama C, Higuchi K, Yoneyama M, Yoneda Y. Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: evaluation using adult mice treated with trimethyltin chloride as a model. J Neurosci Res 2005;82:609–21. doi: 10.1002/jnr.20678
  • Pan Y, Anthony M, Watson S, Clarkson TB. Soy phytoestrogens improve radial arm maze performance in ovariectomized retired breeder rats and do not attenuate benefits of 17h-estradiol treatment. Menopause 2000;7:230–5. doi: 10.1097/00042192-200007040-00004
  • Pan Y, Anthony M, Clarkson TB. Evidence for up-regulation of brain-derived neurotrophic factor mRNA by soy phytoestrogens in the frontal cortex of retired breeder female rats. Neurosci Lett 1999;261:17–20. doi: 10.1016/S0304-3940(98)00994-X
  • Pan Y, Anthony M, Clarkson TB. Effect of estradiol and soy phytoestrogens on choline acetyltransferase and nerve growth factor mRNAs in the frontal cortex and hippocampus of female rats. Proc Soc Exp Biol Med 1999;221:118–25. doi: 10.3181/00379727-221-44393
  • Lund TD, West TW, Tian LY, Bu LH, Simmons DL, Setchell KD, et al. Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens. BMC Neurosci 2001;2:20. doi: 10.1186/1471-2202-2-20
  • Lee YB, Lee HJ, Won MH, Hwang IK, Kang TC, Lee JY, et al. Soy isoflavones improve spatial delayed matching-to-place performance and reduce cholinergic neuron loss in elderly male rats. J Nutr 2004;134:1827–31.
  • Jeong JH, Jo YN, Kim HJ, Jin DE, Kim DO, Heo HJ. Black soybean extract protects against TMT-induced cognitive defects in mice. J Med Food 2014;14:83–91. doi: 10.1089/jmf.2013.3023
  • Pan Y, Anthony M, Watson S, Clarkson TB. Soy phytoestrogens improve radial arm maze performance in ovariectomized retired breeder rats and do not attenuate benefits of 17β-estradiol treatment. Menopause 2000;7:230–5. doi: 10.1097/00042192-200007040-00004
  • Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M, et al. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 2009;198:352–8. doi: 10.1016/j.bbr.2008.11.013
  • Wang J, Ho L, Zhao W, Ono K, Rosensweig C, Chen L, et al. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease. J Neurosci 2008;28:6388–92. doi: 10.1523/JNEUROSCI.0364-08.2008
  • Choi GM, Kim JH, Kwak CH, Jeong CH, Jeong HR, Lee U, et al. Effect of quercetin and memory performance in ICR mice under neurotoxic trimethyltin exposure. Food Chem 2012;132:1019–24. doi: 10.1016/j.foodchem.2011.11.089
  • Kim JK, Bae H, Kim MJ, Choi SJ, Cho HY, Hwang HJ, et al. Inhibitory effect of Poncirus trifoliate on acetylcholinesterase and attenuating activity against trimethyltin-induced learning and memory impairment. Biosci Biotechnol Biochem 2009;73:1105–12. doi: 10.1271/bbb.80859
  • Kim MJ, Choi SJ, Lim ST, Kim HK, Heo HJ, Kim EK, et al. Ferulic acid supplementation prevents trimethyltin-induced cognitive deficits in mice. Biosci Biotechnol Biochem 2007;71:1063–8. doi: 10.1271/bbb.60564
  • Uriarte-Pueyo I, Calvo MI. Flavonoids as acetylcholinesterase inhibitors. Curr Med Chem 2011;18:5289–302. doi: 10.2174/092986711798184325
  • Bruhlmann C, Marston A, Hostettmann K, Carrupt PA, Testa B. Screening of non-alkaloidal natural compounds as acetylcholinesterase inhibitors. Chem Biodivers 2004;1:8198–229. doi: 10.1002/cbdv.200490064
  • Falé PLV, Madeira PJA, Florêncio MH, Ascensão L, Serralheiro MLM. Function of Plectranthus barbatus herbal tea as neuronal acetylcholinesterase inhibitor. Food Funct 2011;2:130–6. doi: 10.1039/C0FO00070A
  • Chao MV, Rajagopal R, Lee FS. Neurotrophin signaling in health and disease. Clin Sci (Lond) 2006;110:1631–73. doi: 10.1042/CS20050163
  • Allen SJ, Dawbarn D. Clinical relevance of the neurotrophins and their receptors. Clin Sci (Lond) 2006;110:175–91. doi: 10.1042/CS20050161
  • Ceccanti M, Mancinelli R, Tirassa P, Laviola G, Rossi S, Romeo M, et al. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol Aging 2012;33:359–67. doi: 10.1016/j.neurobiolaging.2010.03.005
  • De Nicoló S, Tarani L, Ceccanti M, Maldini M, Natella F, Vania A, et al. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition 2013;29:681–7. doi: 10.1016/j.nut.2012.11.007
  • Pan Y, Anthony M, Clarkson TB. Effect of estradiol and soy phytoestrogens on choline acetyltransferase and nerve growth factor mRNAs in the frontal cortex and hippocampus of female rats. Proc Soc Exp Biol Med 1999;221:118–25. doi: 10.3181/00379727-221-44393

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.