Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 34, 2012 - Issue 4: Further Understanding of Stroke
286
Views
60
CrossRef citations to date
0
Altmetric
Review

NADPH oxidase in stroke and cerebrovascular disease

, , &
Pages 338-345 | Published online: 12 Nov 2013

References

  • Jahan R. Hyperacute therapy of ischemic stroke: intravenous thrombolysis. Tech Vasc Interv Radiol. 2005;8:81–6.
  • Jahan R. Hyperacute therapy of acute ischemic stroke: intraarterial thrombolysis and mechanical revascularization strategies. Tech Vasc Interv Radiol. 2005;8:87–91.
  • Kuroda S, Siesjo BK. Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin Neurosci. 1997;4:199–212.
  • Aronowski J, Strong R, Grotta JC. Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab. 1997;17:1048–56.
  • Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21:2–14.
  • Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184:53–68.
  • Munzel T, Hink U, Heitzer T, Meinertz T. Role for nadph/nadh oxidase in the modulation of vascular tone. Ann NY Acad Sci. 1999;874:386–400.
  • Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.
  • Bokoch GM, Knaus UG. Nadph oxidases: not just for leukocytes anymore!Trends Biochem Sci. 2003;28:502–8.
  • Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J. 2005;386:401–16.
  • Bedard K, Krause KH. The NOX family of ROS-generating nadph oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.
  • Anrather J, Racchumi G, Iadecola C. NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem. 2006;281:5657–67.
  • Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003;285:R277–97.
  • Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, et al.. Cell transformation by the superoxide-generating oxidase Mox1. Nature. 1999;401:79–82.
  • Lambeth JD, Cheng G, Arnold RS, Edens WA. Novel homologs of gp91phox. Trends Biochem Sci. 2000;25:459–61.
  • Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue expression of NOX3, NOX4, and NOX5. Gene. 2001;269:131–40.
  • Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: omparison with nonphagocyte oxidases. J Leukoc Biol. 2004;76:760–81.
  • Sorce S, Krause KH. Nox enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal. 2009;11:2481–504.
  • Infanger DW, Sharma RV, Davisson RL. NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal. 2006;8:1583–96.
  • Green SP, Cairns B, Rae J, Errett-Baroncini C, Hongo JA, Erickson RW, et al.. Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab. 2001;21:374–84.
  • Tammariello SP, Quinn MT, Estus S. NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci. 2000;20:RC53.
  • Serrano F, Kolluri NS, Wientjes FB, Card JP, Klann E. NADPH oxidase immunoreactivity in the mouse brain. Brain Res. 2003;988:193–8.
  • Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, et al.. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132:233–8.
  • Lambeth JD. Nox enzymes, ros, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med. 2007;43:332–47.
  • Kim MJ, Shin KS, Chung YB, Jung KW, Cha CI, Shin DH. Immunohistochemical study of p47phox and gp91phox distributions in rat brain. Brain Res. 2005;1040:178–86.
  • Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG. Increased NADPH-oxidase activity and NOX4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke. 2004;35:584–9.
  • Miller AA, Drummond GR, Schmidt HH, Sobey CG. Nadph oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res. 2005;97:1055–62.
  • Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu GY, Quinn MT, et al.. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci. 2005;29:97–106.
  • Zheng Z, Yenari MA. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res. 2004;26:884–92.
  • Chamorro A, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke. 2006;37:291–3.
  • Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, et al.. NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke. 2007;38:3000–6.
  • Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, et al.. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke. 1997;28:2252–8.
  • Chen H, Song YS, Chan PH. Inhibition of NADPH oxidase is neuroprotective after ischemia–reperfusion. J Cereb Blood Flow Metab. 2009;29:1262–72.
  • Suh SW, Shin BS, Ma H, van Hoecke M, Brennan AM, Yenari MA, et al.. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol. 2008;64:654–63.
  • Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, et al.. NADPH oxidase is the primary source of superoxide induced by nmda receptor activation. Nat Neurosci. 2009;12:857–63.
  • Won SJ, Tang XN, Suh SW, Yenari MA, Swanson RA. Hyperglycemia promotes tissue plasminogen activator-induced hemorrhage by increasing superoxide production. Ann Neurol. 2011;70:583–90.
  • Shen J, Bai XY, Qin Y, Jin WW, Zhou JY, Zhou JP, et al.. Interrupted reperfusion reduces the activation of NADPH oxidase after cerebral I/R injury. Free Radic Biol Med. 2011;50:1780–6.
  • Chen H, Kim GS, Okami N, Narasimhan P, Chan PH. NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis. 2011;42:341–8.
  • Woodfin A, Hu DE, Sarker M, Kurokawa T, Fraser P. Acute nadph oxidase activation potentiates cerebrovascular permeability response to bradykinin in ischemia–reperfusion. Free Radic Biol Med. 2011;50:518–24.
  • Genovese T, Mazzon E, Paterniti I, Esposito E, Bramanti P, Cuzzocrea S. Modulation of nadph oxidase activation in cerebral ischemia/reperfusion injury in rats. Brain Res. 2011;1372:92–102.
  • Tang XN, Zheng Z, Giffard RG, Yenari MA. Significance of marrow-derived nicotinamide adenine dinucleotide phosphate oxidase in experimental ischemic stroke. Ann Neurol. 2011;70:606–15.
  • Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, et al.. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 2010;8:e1000479.
  • Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ. Characteristics of the inhibition of nadph oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol. 1994;11:95–102.
  • Simons JM, Hart BA, Ip Vai Ching TR, van Dijk H, Labadie RP. Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neutrophils. Free Radic Biol Med. 1990;8:251–8.
  • Touyz RM. Apocynin, nadph oxidase, and vascular cells: a complex matter. Hypertension. 2008;51:172–4.
  • Stolk J, Rossie W, Dijkman JH. Apocynin improves the efficacy of secretory leukocyte protease inhibitor in experimental emphysema. Am J Respir Crit Care Med. 1994;150:1628–31.
  • Worm van denE, Beukelman CJ, Berg van denAJ, Kroes BH, Labadie RP, et al.. Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Eur J Pharmacol. 2001;433:225–30.
  • Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, et al.. Apocynin is not an inhibitor of vascular nadph oxidases but an antioxidant. Hypertension. 2008;51:211–7.
  • Vejrazka M, Micek R, Stipek S. Apocynin inhibits nadph oxidase in phagocytes but stimulates ros production in non-phagocytic cells. Biochim Biophys Acta. 2005;1722:143–7.
  • Ximenes VF, Fernandes JR, Bueno VB, Catalani LH, de Oliveira GH, Machado RG. The effect of ph on horseradish peroxidase-catalyzed oxidation of melatonin: production of N1-acetyl-N2-5-methoxykynuramine versus radical-mediated degradation. J Pineal Res. 2007;42:291–6.
  • Tang XN, Cairns B, Cairns N, Yenari MA. Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience. 2008;154:556–62.
  • Tang LL, Ye K, Yang XF, Zheng JS. Apocynin attenuates cerebral infarction after transient focal ischaemia in rats. J Int Med Res. 2007;35:517–22.
  • Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY. Apocynin protects against global cerebral ischemia–reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res. 2006;1090:182–9.
  • Pandey A, Kour K, Bani S, Suri KA, Satti NK, Sharma P, et al.. Amelioration of adjuvant induced arthritis by apocynin. Phytother Res. 2009;23:1462–8.
  • Ellis JA, Cross AR, Jones OT. Studies on the electron-transfer mechanism of the human neutrophil NADPH oxidase. Biochem J. 1989;262:575–9.
  • Nagel S, Genius J, Heiland S, Horstmann S, Gardner H, Wagner S. Diphenyleneiodonium and dimethylsulfoxide for treatment of reperfusion injury in cerebral ischemia of the rat. Brain Res. 2007;1132:210–7.
  • Diatchuk V, Lotan O, Koshkin V, Wikstroem P, Pick E. Inhibition of nadph oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem. 1997;272:13292–301.
  • Gillibert M, Dehry Z, Terrier M, El Benna J, Lederer F. Another biological effect of tosylphenylalanylchloromethane (TPCK): it prevents p47phox phosphorylation and translocation upon neutrophil stimulation. Biochem J. 2005;386:549–56.
  • Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD. Small-molecule nox inhibitors: ROS-generating nadph oxidases as therapeutic targets. Antioxid Redox Signal. 2009;11:2535–52.
  • Doussiere J, Poinas A, Blais C, Vignais PV. Phenylarsine oxide as an inhibitor of the activation of the neutrophil nadph oxidase — identification of the beta subunit of the flavocytochrome b component of the nadph oxidase as a target site for phenylarsine oxide by photoaffinity labeling and photoinactivation. Eur J Biochem. 1998;251:649–58.
  • Kutsumi H, Kawai K, Johnston RB, Rokutan K. Evidence for participation of vicinal dithiols in the activation sequence of the respiratory burst of human neutrophils. Blood. 1995;85:2559–69.
  • Yoshida LS, Abe S, Tsunawaki S. Fungal gliotoxin targets the onset of superoxide-generating NADPH oxidase of human neutrophils. Biochem Biophys Res Commun. 2000;268:716–23.
  • Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK. Honokiol protects rat brain from focal cerebral ischemia–reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Res. 2003;992:159–66.
  • Chen CM, Liu SH, Lin-Shiau SY. Honokiol, a neuroprotectant against mouse cerebral ischaemia, mediated by preserving Na+, K+-atpase activity and mitochondrial functions. Basic Clin Pharmacol Toxicol. 2007;101:108–16.
  • Ding Y, Chen ZJ, Liu S, Che D, Vetter M, Chang CH. Inhibition of NOX-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol. 2005;57:111–6.
  • Barry-Lane PA, Patterson C, Merwe van derM, Hu Z, Holland SM, Yeh ET, et al.. P47phox is required for atherosclerotic lesion progression in ApoE−/− mice. J Clin Invest. 2001;108:1513–22.
  • Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, et al.. A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem. 2001;276:1417–23.
  • Hazra B, Sarkar R, Bhattacharyya S, Ghosh PK, Chel G, Dinda B. Synthesis of plumbagin derivatives and their inhibitory activities against ehrlich ascites carcinoma in vivo and leishmania donovani promastigotes in vitro. Phytother Res. 2002;16:133–7.
  • Parimala R, Sachdanandam P. Effect of plumbagin on some glucose metabolising enzymes studied in rats in experimental hepatoma. Mol Cell Biochem. 1993;125:59–63.
  • Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51:794–8.
  • Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2− and systolic blood pressure in mice. Circ Res. 2001;89:408–14.
  • Cotgreave IA, Duddy SK, Kass GE, Thompson D, Moldeus P. Studies on the anti-inflammatory activity of ebselen. Ebselen interferes with granulocyte oxidative burst by dual inhibition of nadph oxidase and protein kinase c? Biochem Pharmacol. 1989;38:649–56.
  • Parnham M, Sies H. Ebselen: prospective therapy for cerebral ischaemia. Expert Opin Investig Drugs. 2000;9:607–19.
  • Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, et al.. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Ebselen study group. Stroke. 1998;29:12–7.
  • ten Freyhaus H, Huntgeburth M, Wingler K, Schnitker J, Baumer AT, Vantler M, et al.. Novel NOX inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res. 2006;71:331–41.
  • Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HH, et al.. Novel NOX inhibitor of OXLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun. 2006;344:200–5.
  • Cayatte AJ, Rupin A, Oliver-Krasinski J, Maitland K, Sansilvestri-Morel P, Boussard MF, et al.. S17834, a new inhibitor of cell adhesion and atherosclerosis that targets NADPH oxidase. Arterioscler Thromb Vasc Biol. 2001;21:1577–84.
  • Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther. 2006;111:928–48.
  • Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M, et al.. Increased nadh-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation. 1999;99:2027–33.
  • Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 2000;20:61–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.