Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 34, 2012 - Issue 4: Further Understanding of Stroke
437
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Toll-like receptor 4 signaling is involved in PACAP-induced neuroprotection in BV2 microglial cells under OGD/reoxygenation

, , , , , & show all
Pages 379-389 | Published online: 12 Nov 2013

References

  • Deng YY, Lu J, Ling EA, Kaur C. Role of microglia in the process of inflammation in the hypoxic developing brain. Front Biosci (Schol Ed). 2011;3:884–900.
  • Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. 2005;81(3):302–13.
  • Arimura A. Perspectives on pituitary adenylate cyclase-activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol. 1998;48:301–31.
  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H. Pituitary adenylate cyclase activating polypeptide and its receptors: from structure to functions. Pharmacol Rev. 2000;52:269–324.
  • Lenti L, Zimmermann A, Kisa D, Oláh O, Tóth GK, Hegyi O, et al.. PACAP and VIP differentially preserve neurovascular reactivity after global cerebral ischemia in newborn pigs. Brain Res. 2009;1283:50–7.
  • Stetler RA, Gao Y, Zukin RS, Vosler PS, Zhang L, Zhang F, et al.. Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc Natl Acad Sci USA. 2010;107(7):3204–9.
  • Dejda A, Seaborn T, Bourgault S, Touzani O, Fournier A, Vaudry H, et al.. PACAP and a novel stable analog protect rat brain from ischemia: insight into the mechanisms of action. Peptides. 2011;32:1207–16.
  • Reglodi D, Tamás A, Somogyvári-Vigh A, Szántó Z, Kertes E, Lénárd L, et al.. Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides. 2002;23:2227–34.
  • Reglodi D, Kiss P, Lubics A, Tamas A. Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des. 2011;17(10):962–72.
  • Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Fournier A, et al.. The neuroprotective effect of pituitary adenylate cyclase activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci USA. 2000;97:13390–5.
  • Vaudry D, Rousselle C, Basille M, Falluel-Morel A, Pamantung TF, Fontaine M, et al.. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc Natl Acad Sci USA. 2002;99:6398–403.
  • Dejda A, Nowak JZ. Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmocol Reports. 2005;57:307–20.
  • Suk Kyoungho, Park JH, Lee WH. Neuropeptide PACAP inhibits hypoxic activation of brain microglia: a protective mechanism against microglial neurotoxicity in ischemia. Brain Res. 2004;1026:151–6.
  • Serebrovskaya TV, Nikolsky IS, Nikolska VV, Mallet RT, Ishchuk VA. Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol. 2011;12(3):243–52.
  • Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L, et al.. Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol. 2009;183(11);7471–7.
  • Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–26.
  • Beutler B. Inferences, questions and possibilities in Toll-like receptor signaling. Nature. 2004;430:257–63.
  • Rakoff-Nahoum S, Medzhitov R. Role of Toll-like receptors in tissue repair and tumorigenesis. Biochemistry (Mosc). 2008;73:555–61.
  • Cao Z, Hu Y, Wu W, Ha T, Kelley J, Deng C, et al.. The TIR/BB-loop mimetic AS-1 protects the myocardium from ischaemia/reperfusion injury. Cardiovasc Res. 2009;84(3):442–51.
  • Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17(1):1–14.
  • Chearwae W, Bright JJ. 15-deoxy-delta(12,14)-prostaglandin J(2) and curcumin modulate the expression of Toll-like receptors 4 and 9 in autoimmune T lymphocyte. J Clin Immunol. 2008;28:558–70.
  • O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61:177–97.
  • Velayudham A, Hritz I, Dolganiue A, Mandrekar P, Kurt-Jones E, Szabo G. Critial role of Toll- like receptors and the common TLR adaptor, MyD88, in induction of granulomas and liver injury. J Hepatol. 2006;45(6):813–24.
  • Yang YX, Zhou HD, Yang YB, Li W, Zhou M, Zeng Z, et al.. Lipopolysaeeharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NF-kappaB and MAPKS signaling pathways. Mol Immunol. 2007;44(5):984–92.
  • Zwagerman N, Plumlee C, Guthikonda M, Ding Y. Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurol Res. 2010;32(2):123–6.
  • Wang ZF, Zhou J, Tang XC. Huperzine B protects rat pheochromocytoma cells against oxygen-glucose deprivation-induced injury. Acta Pharmacol Sin. 2002;23(12):1193–8.
  • Zhu SM, Xiong XX, Zheng YY, Pan CF. Propofol inhibits aquaporin 4 expression through a protein kinase C-dependent pathway in an astrocyte model of cerebral ischemia/reoxygenation. Anesth Analg. 2009;109(5):1493–9.
  • Bourgault S, Vaudry D, Dejda A, Doan ND, Vaudry H, Fournier A. Pituitary adenylate cyclase-activating polypeptide: focus on structure-activity relationships of a neuroprotective peptide. Curr Med Chem. 2009;16(33):4462–80.
  • Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk-Melody JE, et al.. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38). J Biol Chem. 2003;278(25):22418–23.
  • Birk S, Sitarz JT, Petersen KA, Oturai PS, Kruuse C, Fahrenkrug J, et al.. The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regul Pept. 2007;140(3):185–91.
  • Yun HJ, Yoon JH, Lee JK, Noh KT, Yoon KW, Oh HJ, et al.. Daxx mediates activation-induced cell death in microglia by triggering MST1 signalling. EMBO J. 2011;30(12):2465–76.
  • Taylor DL, Pirianov G, Holland S, McGinnity CJ, Norman AL, Reali C, et al.. Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. J Neurosci Res. 2010;88(8):1632–44.
  • Cao JJ, Li KS, Shen YQ. Activated immune cells in Parkinson’s disease. J Neuroimmune Pharmacol. 2011;6:323–9.
  • Delgado M, Abad C, Martinez C, Juarranz MG, Leceta J, Ganea D, et al.. PACAP in immunity and inflammation. Ann NY Acad Sci. 2003;992:141–57.
  • Ganea D, Delgado M. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as modulators of both innate and adaptive immunity. Crit Rev Oral Biol Med. 2002;13(3):229–37.
  • Li M, Khan AM, Maderdrut JL, Simon EE, Batuman V. The effect of PACAP38 on MyD88-mediated signal transduction in ischemia-/hypoxia-induced acute kidney injury. Am J Nephrol. 2010;32(6):522–32.
  • Smith HS. Activated microglia in nociception. Pain Physician. 2010;13(3):295–304.
  • Ben Mkaddem S, Pedruzzi E, Werts C, Coant N, Bens M, Cluzeaud F, et al.. Heat shock protein gp96 and NAD(P)H oxidase 4 play key roles in Toll-like receptor 4-activated apoptosis during renal ischemia/reperfusion injury. Cell Death Differ. 2010;17:1474–85.
  • Lehnardt SL, Massillon P, Follett FE, Jensen FE, Ratan R, Rosenberg PA, et al.. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA. 2003;100:8514.–9.
  • Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, et al.. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA. 2007;104(34):13798–803.
  • Ock J, Jeong J, Choi WS, Lee WH, Kim SH, Kim IK, et al.. Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia. J Neurosci Res. 2007;85(9):1989–95.
  • Li M, Khan AM, Maderdrut JL, Simon EE, Batuman V. The effect of PACAP38 on MyD88-Mediated signal transduction in ischemia-/hypoxia-induced acute kidney injury. Am J Nephrol. 2010;32(6):522–32.
  • Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62.
  • Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Ann Rev Immunol. 2009;27:693–733.
  • Solt LA, May MJ. The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res. 2009;42(1–3):3–18.
  • Jeon J, Park KA, Lee H, Shin S, Zhang T, Won M, et al.. Water extract of Cynanchi atrati Radix regulates inflammation and apoptotic cell death through suppression of IKK-mediated NF-kappaB signaling. J Ethnopharmacol. 2011;137:626–34.
  • Jiang W, Fu F, Tian J, Zhu H, Hou J. Curculigoside A attenuates experimental cerebral ischemia injury in vitro and vivo. Neuroscience. 2011;192:572–9.
  • Wang F, Li H, Shi H, Sun B. Pro-apoptotic role of nuclear factor-kappaB in adriamycin-induced acute myocardial injury in rats. Mol Med Report. 2012;5(2):400–4.
  • Wang H, Cho CH. Effect of NF-kappaB signaling on apoptosis in chronic inflammation-associated carcinogenesis. Curr Cancer Drug Targets. 2010;10(6):593–9.
  • Yang YF, Chen Z, Hu SL, Hu J, Li B, Li JT, et al.. Interleukin-1 receptor associated kinases-1/4 inhibition protects against acute hypoxia/ischemia-induced neuronal injury in vivo and in vitro. Neuroscience. 2011;196:25-34.
  • Chu W, Li X, Li C, Wan L, Shi H, Song X, et al.. TGFBR3, a potential negative regulator of TGF-beta signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis. J Cell Physiol. 2011;226(10):2586–94.
  • Sawada M, Kondo N, Suzumura A, Marunouchi T. Production of tumornecrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 1989;491(2):394–7.
  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J. 2002;16(11):1474–6.
  • Cheong MH, Lee SR, Yoo HS, Jeong JW, Kim GY, Kim WJ, et al.. Anti-inflammatory effects of Polygala tenuifolia root through inhibition of NF-kappaB activation in lipopolysaccharide-induced BV2 microglial cells. J Ethnopharmacol. 2011;137(3):1402–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.