Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 35, 2013 - Issue 9
62
Views
3
CrossRef citations to date
0
Altmetric
Original Article

GEMSP exerts a myelin-protecting role in the rat optic nerve

, , , &
Pages 903-911 | Received 20 Nov 2012, Accepted 19 May 2013, Published online: 18 Nov 2013

References

  • Tallantyre EC, Bo L, Al-Rawashdeh O, Owens T, Polman CH, Lowe JS, et al.. Clinico-pathological evidence that axonal loss underlies disability in progressive multiple sclerosis. Mult Scler. 2010;16:406–11.
  • Vogt J, Paul F, Aktas O, Müller-Wielsch K, Dörr J, Dörr S, et al.. Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis. Ann Neurol. 2009;66:310–22.
  • Trojano M, Lucchese G, Graziano G, Taylor BV, Simpson S, Lepore V, et al.. Geographical variations in sex ratio trends over time in multiple sclerosis. PLoS One. 2012;7:e48078.
  • Chen L, Gordon LK. Ocular manifestations of multiple sclerosis. Curr Opin Ophthalmol. 2005;16:315–20.
  • Roodhooft JM. Ocular problems in early stages of multiple sclerosis. Bull Soc Belge Ophtalmol. 2009;313:65–8.
  • Fridkis-Hareli M, Santambrogio L, Stern JN, Fugger L, Brosnan C, Strominger JL. Novel synthetic amino acid copolymers that inhibit autoantigen-specific T cell responses and suppress experimental autoimmune encephalomyelitis. J Clin Invest. 2002;109:1635–43.
  • Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela M, Arnon R. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci U S A. 2000;97:11472–7.
  • Brunmark C, Runstrom A, Ohlsson L, Sparre B, Brodin T, Aström M, et al.. The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2002;130:163–72.
  • Floris S, Ruuls SR, Wierinckx A, van der Pol SM, Döpp E, van der Meide PH, et al.. Interferon-beta directly influences monocyte infiltration into the central nervous system. J Neuroimmunol. 2002;127:69–79.
  • Mangas A, Covenas R, Bodet D, de Leon M, Duleu S, Geffard M. Evaluation of the effects of a new drug candidate (GEMSP) in a chronic EAE model. Int J Biol Sci. 2008;4:150–60.
  • Teitelbaum D, Aharoni R, Klinger E, Kreitman R, Raymond E, Malley A, et al.. Oral glatiramer acetate in experimental autoimmune encephalomyelitis: Clinical and immunological studies. Ann N Y Acad Sci. 2004;1029:239–49.
  • van der Meide PH, de Labie MC, Ruuls SR, Groenestein RJ, Botman CA, Olsson T, et al.. Discontinuation of treatment with IFN-beta leads to exacerbation of experimental autoimmune encephalomyelitis in lewis rats. rapid reversal of the antiproliferative activity of IFN-beta and excessive expansion of autoreactive T cells as disease promoting mechanisms. J Neuroimmunol. 1998;84:14–23.
  • Geffard M, Duleu S, Bessede A, Vigier V, Bodet D, Mangas A, et al.. GEMSP: a new therapeutic approach to multiple sclerosis. Cent Nerv Syst Agents Med Chem. 2012;12:173–81.
  • Mangas A, Covenas R, Geffard M. New drug therapies for multiple sclerosis. Curr Opin Neurol. 2010;23:287–92.
  • Geffard M, de Bisschop L, Duleu S, Hassaine N, Mangas A, Covenas R. Endotherapia: a new frontier in the treatment of multiple sclerosis and other chronic diseases. Discov Med. 2010;10:443–51.
  • Mangas A, Covenas R, Bodet D, Dabadie MP, Glaize G, Geffard M. Evaluation of the effects of a new drug on brain leukocyte infiltration in an experimental model of autoimmune encephalomyelitis. Lett Drug Des Discov. 2006;3:138–48.
  • Villoslada P, Abel K, Heald N, Goertsches R, Hauser SL, Genain CP. Frequency, heterogeneity and encephalitogenicity of T cells specific for myelin oligodendrocyte glycoprotein in naive outbred primates. Eur J Immunol. 2001;31:2942–50.
  • Weissert R, Wallstrom E, Storch MK, Stefferl A, Lorentzen J, Lassmann H, et al.. MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest. 1998;102:1265–73.
  • Aktas O, Waiczies S, Zipp F. Neurodegeneration in autoimmune demyelination: Recent mechanistic insights reveal novel therapeutic targets. J Neuroimmunol. 2007;184:17–26.
  • Bjartmar C, Wujek JR, Trapp BD. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci. 2003;206:165–71.
  • Hobom M, Storch MK, Weissert R, Maier K, Radhakrishnan A, Kramer B, et al.. Mechanisms and time course of neuronal degeneration in experimental autoimmune encephalomyelitis. Brain Pathol. 2004;14:148–57.
  • Fairless R, Williams SK, Hoffmann DB, Stojic A, Hochmeister S, Schmitz F, et al.. Preclinical retinal neurodegeneration in a model of multiple sclerosis. J Neurosci. 2012;32:5585–97.
  • Gelfand JM, Goodin DS, Boscardin WJ, Nolan R, Cuneo A, Green AJ. Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS One. 2012;7:e36847.
  • Oberwahrenbrock T, Schippling S, Ringelstein M, Kaufhold F, Zimmermann H, Keser N, et al.. Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int. 2012;2012:530305.
  • Zimmermann H, Freing A, Kaufhold F, Gaede G, Bohn E, Bock M, et al.. Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Mult Scler. 2013;19(4):443–50.
  • Dorr J, Wernecke KD, Bock M, Gaede G, Wuerfel JT, Pfueller CF, et al.. Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS One. 2011;6:e18132.
  • Saidha S, Syc SB, Durbin MK, Eckstein C, Oakley JD, Meyer SA, et al.. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler. 2011;17:1449–63.
  • Brandt AU, Oberwahrenbrock T, Ringelstein M, Young KL, Tiede M, Hartung HP, et al.. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain. 2011;134:e193; author reply e194.
  • Bock M, Brandt AU, Dorr J, Pfueller CF, Ohlraun S, Zipp F, et al.. Time domain and spectral domain optical coherence tomography in multiple sclerosis: a comparative cross-sectional study. Mult Scler. 2010;16:893–6.
  • Mangas A, Covenas R, Bodet D, Duleu S, Geffard M. A new drug candidate (GEMSP) for multiple sclerosis. Curr Med Chem. 2009;16:3203–14.
  • Mangas A, Covenas R, Bodet D, Geffard M. Antisera and immunocytochemical techniques. In: Mangas A; Covenas R, Geffard M (eds.) Brain molecules: from vitamins to molecules for axonal guidance. Trivandrum: Transworld Research Network; 2008, 1–25.
  • Covenas R, Mangas A, Jaulain C, Geffard M. Multiple sclerosis. In: Sugaya K and Samsam M, (eds.) Molecular and clinical neuroscience. Plymouth: McNeil, in press.
  • Althaus HH. Remyelination in multiple sclerosis: A new role for neurotrophins? Prog Brain Res. 2004;146:415–32.
  • Reiter RJ. Potential biological consequences of excessive light exposure: Melatonin suppression, DNA damage, cancer and neurodegenerative diseases. Neuro Endocrinol Lett. 2002;23(Suppl.2):9–13.
  • Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, Carreau A, et al.. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem. 2003;278:6521–31.
  • Gillson G, Wright JV, DeLack E, Ballasiotes G. Transdermal histamine in multiple sclerosis: part one – clinical experience. Altern Med Rev. 1999;4:424–8.
  • Wuerfel J, Paul F, Zipp F. Cerebral blood perfusion changes in multiple sclerosis. J Neurol Sci. 2007;259:16–20.
  • van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EA. Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr. 2005;59:1347–61.
  • Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312–22.
  • Helgestad J, Storm-Mathisen I, Lie SO. Vitamin C and thiol reagents promote the in vitro growth of murine granulocyte/macrophage progenitor cells by neutralizing endogenous inhibitor(s). Blut. 1986;52:1–8.
  • Iwata-Ichikawa E, Kondo Y, Miyazaki I, Asanuma M, Ogawa N. Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem. 1999;72:2334–44.
  • Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: The need for effective antioxidant therapy. J Neurol. 2004;251:261–8.
  • Herges K, Millward JM, Hentschel N, Infante-Duarte C, Aktas O, Zipp F. Neuroprotective effect of combination therapy of glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation. PLoS One. 2011;6:e25456.
  • Di Biase A, Salvati S. Exogenous lipids in myelination and myelination. Kaohsiung J Med Sci. 1997;13:19–29.
  • Medina JM, Tabernero A. Astrocyte-synthesized oleic acid behaves as a neurotrophic factor for neurons. J Physiol Paris. 2002;96:265–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.