Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 51, 2016 - Issue 1
643
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Effect of Fe ion concentration on corrosion of carbon steel in CO2 environment

, , , &
Pages 25-36 | Received 05 Jan 2015, Accepted 01 May 2015, Published online: 26 Apr 2016

References

  • A. Rubin and J. Gudme: ‘Qualification of steel wire for flexible pipes’, NACE International, Houston, TX, March 2006, Paper 06149.
  • A. Rubin and J. Gudme: ‘Test method for corrosion fatigue testing of cold rolled steel wire in sour and sweet environment based on deflection controlled four point bending’, NACE International, Houston, TX, March 2009, Paper 09103.
  • A. Rubin, S. Overby, T. S. Nielsen, M. Haahr and J. Gudme: ‘Corrosion rates of carbon steel in confined environments’, NACE International, Houston, TX, 2012, Paper 01495.
  • S. Nešić: ‘Key issues related to modelling of internal corrosion of oil and gas pipelines—a review’, Corros. Sci., 2007, 49, 4308–4338. doi: 10.1016/j.corsci.2007.06.006
  • M. Nordsveen, S. Nešić, R. Nyborg and A. Stangeland: ‘A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification’, Corrosion, 2003, 59, 443–456. doi: 10.5006/1.3277576
  • S. Nešić, R. Nyborg, A. Stangeland and M. Nordsveen: ‘Mechanistic model for CO2 corrosion with protective iron carbonate films’, NACE International, Houston, TX, March 2001, Paper 01040.
  • S. Nešić: ‘An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions’, Corrosion, 1996, 52, 280–294. doi: 10.5006/1.3293640
  • S. Nešić and K. -L. J. Lee: ‘A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 3: film growth model’, Corrosion, 2003, 59, 616–628. doi: 10.5006/1.3277592
  • S. Nešić, M. Nordsveen and R. Nyborg: ‘A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 2: a numerical experiment’, Corrosion, 2003, 59, 489–497. doi: 10.5006/1.3277579
  • W. Sun, S. Nešić and R. C. Woollam: ‘The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit’, Corros. Sci., 2009, 51, 1273–1276. doi: 10.1016/j.corsci.2009.03.009
  • J. W. Mullin: ‘Crystallization’, 3rd edn, 242; 1993, Oxford, Oxford Univ. Press.
  • W. Sun and S. Nešić: ‘Kinetics of corrosion layer formation: part 1—iron carbonate layers in carbon dioxide corrosion’, Corrosion, 2008, 64, 334–346. doi: 10.5006/1.3278477
  • K. Videm and A. Dugstad: ‘Corrosion of carbon steel in an aqueous carbon dioxide environment. II: film formation’, Mater. Perform., 1989, 28, 46–50.
  • K. Videm and A. Dugstad: ‘Corrosion of carbon steel in an aqueous carbon dioxide environment. I: solution effects’, Mater. Perform., 1989, 28, 63–67.
  • A. Dugstad: ‘The importance of FeCO3 supersaturation on the CO2 corrosion of carbon steels’, NACE International, Houston, TX, March 1992, Paper 14.
  • R. Nyborg and A. Dugstad: ‘Mesa corrosion attack in carbon steel and 0.5% chromium steel’, NACE International, Houston, TX, March 1998, Paper 29.
  • B. Kinsella, Y. J. Tan and S. Bailey: ‘Electrochemical impedance spectroscopy and surface characterization techniques to study carbon dioxide corrosion product scales’, Corrosion, 1998, 54, 835–842. doi: 10.5006/1.3284803
  • S. Nešić, G. T. Solvi and J. Enerhaug: ‘Comparison of the rotating cylinder and pipe flow tests for flow-sensitive carbon dioxide corrosion’, Corrosion, 1995, 51, 773–787. doi: 10.5006/1.3293555
  • V. Ruzic, M. Veidt and S. Nešić: ‘Protective iron carbonate films—part 3: simultaneous chemo-mechanical removal in single-phase aqueous flow’, Corrosion, 2007, 63, 758–769. doi: 10.5006/1.3278425
  • A. Dugstad: ‘Fundamental aspects of CO2 metal loss corrosion—part 1: mechanism’, NACE International, Houston, TX’; 2006.
  • K. Chokshi, W. Sun and S. Nešić: ‘Iron carbonate scale growth and the effect of inhibition in CO2 corrosion of mild steel’, NACE International, Houston, TX, 2005, Paper 05285.
  • J. Han, B. N. Brown and S. Nešić: ‘Investigation of the galvanic mechanism for localized carbon dioxide corrosion propagation using the artificial pit technique’, NACE International, Houston, TX, 2007, Paper 07323.
  • S. Nešić, J. Lee and V. Ruzic: ‘A mechanistic model of iron carbonate film growth and the effect on CO2 corrosion of mild steel’. NACE International, Houston, TX; 2002.
  • J. L. Crolet, N. Thevenot and S. Nešić: ‘Role of conductive corrosion products in the protectiveness of corrosion layers’, Corrosion, 1998, 54, 194–203. doi: 10.5006/1.3284844
  • W. Stephen Tait: ‘An introduction to electrochemical corrosion testing for practicing engineers & scientists’; 1994, Racine, WI, PairODocs Professionals.
  • A. Dugstad: ‘Mechanism of protective film formation during CO2 corrosion of carbon steel’, NACE International, Houston, TX, 1998, Paper 31.
  • T. Berntsen, M. Seiersten and T. Hemmingsen: ‘Effect of FeCO3 supersaturation and carbide exposure on the CO2 corrosion rate of carbon steel’, Corrosion, 2013, 69, 601–613. doi: 10.5006/0553
  • J. Han, Y. Yang, S. Nesic and B. N. Brown: ‘Roles of passivation and galvanic effects in localized CO2 corrosion of mild steel’. NACE International, Houston, TX, 2008, Paper 08332.
  • A. Pfennig, R. Wiegand, M. Wolf and C. -P. Bork: ‘Corrosion and corrosion fatigue of AISI 420C (X46Cr13) at 60 °C in CO2-saturated artificial geothermal brine’, Corros. Sci., 2013, 68, 134–143. doi: 10.1016/j.corsci.2012.11.005
  • S. Al-Hassan, B. Mishra, D. L. Olson and M. M. Salama: ‘Effect of microstructure on corrosion of steels in aqueous solutions containing carbon dioxide’, Corrosion, 1998, 54, 480–491. doi: 10.5006/1.3284876
  • J. B. Sun, G. A. Zhang, W. Liu and M. X. Lu: ‘The formation mechanism of corrosion scale and electrochemical characteristic of low alloy steel in carbon dioxide-saturated solution’, Corros. Sci., 2012, 57, 131–138. doi: 10.1016/j.corsci.2011.12.025
  • J. L. Mora-Mendoza and S. Turgoose: ‘Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions’, Corros. Sci., 2002, 44, 1223–1246. doi: 10.1016/S0010-938X(01)00141-X
  • M. Ueda and A. Ikeda: ‘Effect of microstructure and Cr content in steel on CO2 corrosion’, NACE International, Houston, TX, March 1996, Paper 13.
  • D. A. López, T. Pérez and S. N. Simison: ‘The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal’, Mater. Des., 2003, 24, 561–575. doi: 10.1016/S0261-3069(03)00158-4
  • A. Dugstad, L. Børvik, S. Palencsar and P. A. Eikrem: ‘Corrosion testing of steel armour wires in flexible pipes—a parametric study’, NACE International, Houston, TX, March 2015, Paper 5829.
  • M. Gao, X. Pang and K. Gao: ‘The growth mechanism of CO2 corrosion product films’, Corros. Sci., 2011, 53, 557–568. doi: 10.1016/j.corsci.2010.09.060
  • Y. Zhang, X. Pang, S. Qu, X. Li and K. Gao: ‘Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition’, Corros. Sci., 2012, 59, 186–197. doi: 10.1016/j.corsci.2012.03.006
  • A. Félix-Henry: ‘Prevention and monitoring of fatigue-corrosion of flexible risers’ steel reinforcements’ ‘Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, CA, June 2007, Paper 29186’
  • R. Akid: ‘Corrosion fatigue’, Shreir's Corros., 2010, 928–953. doi: 10.1016/B978-044452787-5.00038-X
  • Y. Z. Wang: ‘Corrosion fatigue’, in ’Uhlig's corrosion handbook’, 3rd edn, 195–202; 2011, New York, John Wiley & Sons.
  • R. A. Y. Wang and R. Akid: ‘Role of nonmetallic inclusions in fatigue, pitting, and corrosion fatigue’, Corrosion, 1996, 52, 92–102. doi: 10.5006/1.3292108
  • J. Congleton, I. H. Craig, R. A. Olieh and R. N. Parkins: ‘Some electrochemical and microstructural aspects of corrosion fatigue’, 367–389; 1983, Philadelphia, PA, American Society for Testing and Materials.
  • F. Ropital, C. Condat-Taravel, J. N. Saas and C. Duret: ‘Methodology to study the general corrosion of steel armours in simulated conditions of flexible pipe annulus influence of confinement and evaluation of the pH’, The European Corrosion Congress, Moscow, Russia; September 2000.
  • C. Taravel-Condat and N. Desamais: ‘Qualification of high strength carbon steel wires for use in specific annulus environment of flexible pipes containing CO2 and H2S’. Proc. 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 2006, Paper 92394.
  • E. Remita, F. Ropital and J. Kittel: ‘Experimental and theoretical investigation of the uniform corrosion in the annulus of offshore flexible pipelines’, NACE International, Houston, TX, March 2008, Paper 08538.
  • E. Remita, B. Tribollet, E. Sutter, F. Ropital, X. Longaygue, J. Kittel, C. Taravel-Condat and N. Desamais: ‘A kinetic model of CO2 corrosion in the confined environment of flexible pipe annulus’, ‘ The European Corrosion Congress, Freiburg, Germany’; September 2007.
  • R. Clements: ‘Corrosion assessment prediction for a confined flexible pipe annulus’, The European Corrosion Congress, Edinburgh, Scotland; September 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.