916
Views
38
CrossRef citations to date
0
Altmetric
Full Critical Review

Hierarchical perspective of bone toughness – from molecules to fracture

&

References

  • Melton L.J. 3rd: ‘Adverse outcomes of osteoporotic fractures in the general population’, J. Bone Miner. Res., 2003, 18, (6), 1139–1141.
  • Ray N.F., Chan J.K., Thamer M. and Melton L.J. 3rd: ‘Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation’, J. Bone Miner. Res., 1997, 12, (1), 24–35.
  • Hui SL, Slemenda CW and Johnston CC Jr: ‘Age and bone mass as predictors of fracture in a prospective study’, J. Clin. Invest., 1988, 81,(6), 1804–1809.
  • Seeman E: ‘Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy?’, Bone, 2007, 41, (3), 308–317.
  • Stone KL, Seeley DG, Lui L.-Y, Cauley JA, Ensrud K, Browner WS, Nevitt MC and Cummings SR: ‘BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures’, J. Bone Miner. Res., 2003, 18, (11), 1947–1954.
  • Bouxsein ML: ‘Bone quality: where do we go from here?’, Osteoporos. Int., 2003, 14, (5), 118–127.
  • Seeman E: ‘Bone quality: the material and structural basis of bone strength’, J. Bone Miner. Metab., 2008, 26, (1), 1–8.
  • van der Meulen MCH, Jepsen KJ and Mikić B: ‘Understanding bone strength: size isn’t everything’, Bone, 2001, 29, (2), 101–104.
  • Rho JY, Kuhn-Spearing L and Zioupos P: ‘Mechanical properties and the hierarchical structure of bone’, Med. Eng. Phys., 1998, 20, (2), 92–102.
  • Weiner S and Wagner HD: ‘The material bone: structure-mechanical function relations’, Annu. Rev. Mater. Sci., 1998, 28, (1), 271–298.
  • Fratzl P and Weinkamer R: ‘Nature’s hierarchical materials’, Prog. Mater. Sci., 2007, 52, (8), 1263–1334.
  • Mellon SJ and Tanner KE: ‘Bone and its adaptation to mechanical loading: a review’, Int. Mater. Rev., 2012, 57, (5), 235–255.
  • Martin RB, Burr DB and Sharkey NA: ‘Skeletal tissue mechanics’; 1998, New York, Springer-Verlag.
  • Burr DB, Schaffler MB and Frederickson RG: ‘Composition of the cement line and its possible mechanical role as a local interface in human compact bone’, J. Biomech., 1988, 21, (11), 939–945.
  • Landis WJ: ‘The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix’, Bone, 1995, 16, (5), 533–544.
  • Sroga G and Vashishth D: ‘Effects of bone matrix proteins on fracture and fragility in osteoporosis’, Curr. Osteoporos. Rep., 2012, 10, (2), 141–150.
  • Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS and Mosekilde L: ‘Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength’, Calcif. Tissue Int., 1999, 65, (3), 203–210.
  • Saito M and Marumo K: ‘Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus’, Osteoporos. Int., 2010, 21, (2), 195–214.
  • Karim L, Tang SY, Sroga GE and Vashishth D: ‘Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone’, Osteoporos. Int., 2013, 24, (9), 2441–2447.
  • Nyman JS, Roy A, Acuna RL, Gayle HJ, Reyes MJ, Tyler JH, Dean DD and Wang X: ‘Age-related effect on the concentration of collagen cross-links in human osteonal and interstitial bone tissue’, Bone, 2006, 39, (6), 1210–1217.
  • Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M and Federici A: ‘Advanced glycation end products and bone loss during aging’, Ann. NY Acad. Sci., 2005, 1043, (1), 710–717.
  • Tang SY and Vashishth D: ‘Non-enzymatic glycation alters microdamage formation in human cancellous bone’, Bone, 2010, 46, (1), 148–154.
  • Tang SY, Zeenath U and Vashishth D: ‘Effects of non-enzymatic glycation on cancellous bone fragility’, Bone, 2007, 40, (4), 1144–1151.
  • Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J and Fyhrie DP: ‘Influence of nonenzymatic glycation on biomechanical properties of cortical bone’, Bone, 2001, 28, (2), 195–201.
  • Wang X, Shen X, Li X and Mauli Agrawal C: ‘Age-related changes in the collagen network and toughness of bone’, Bone, 2002, 31, (1), 1–7.
  • Vashishth D, Wu P and Gibson GJ: ‘Age-related loss in bone: toughness is explained by non-enzymatic glycation in collagen’, 497; 2004, San Francisco, CA, Transactions of the Annual Meeting of the Orthopaedic Research Society.
  • Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, Busse B, Alliston T, Ager JW and Ritchie RO: ‘Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales’, P. Natl. Acad. Sci., 2011, 108, (35), 14416–14421.
  • Siegmund T, Allen MR and Burr DB: ‘Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking’, J. Biomech., 2008, 41, (7), 1427–1435.
  • Karim L and Vashishth D: ‘Heterogeneous glycation of cancellous bone and its association with bone quality and fragility’, PLoS One., 2012, 7, (4), e35047.
  • Saito M, Fujii K, Soshi S and Tanaka T: ‘Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture’, Osteoporos. Int., 2006, 17, (7), 986–995.
  • Willett TL, Sutty S, Gaspar A, Avery N and Grynpas M: ‘In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone’, Bone, 2013, 52, (2), 611–622.
  • Zioupos P, Currey JD and Hamer AJ: ‘The role of collagen in the declining mechanical properties of aging human cortical bone’, J. Biomed. Mater. Res., 1999, 45, (2), 108–116.
  • Kafantari H, Kounadi E, Fatouros M, Milonakis M and Tzaphlidou M: ‘Structural alterations in rat skin and bone collagen fibrils induced by ovariectomy’, Bone, 2000, 26, (4), 349–353.
  • Peterlik H, Roschger P, Klaushofer K, Fratzl P: ‘Orientation dependent fracture toughness of lamellar bone’, Int. J. Fract., 2006, 139, (3–4), 395–405.
  • Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GA, Stucky GD, Morse DE and Hansma PK: ‘Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture’, Nat. Mater., 2005, 4, (8), 612–616.
  • Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM and Vashishth D: ‘Dilatational band formation in bone’, P. Natl. Acad. Sci., 2012, 109, (47), 19178–19183.
  • Thurner P.J., Chen C.G., Ionova-Martin S., Sun L., Harman A., Porter A., Ager J.W. 3rd, Ritchie R.O. and Alliston T.: ‘Osteopontin deficiency increases bone fragility but preserves bone mass’, Bone, 2010, 46, (6), 1564–1573.
  • Duvall CL, Taylor WR, Weiss D, Wojtowicz AM and Guldberg RE: ‘Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice’, J. Bone Miner. Res., 2007, 22, (2), 286–297.
  • Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A and Karsenty G: ‘Increased bone formation in osteocalcin-deficient mice’, Nature, 1996, 382, (6590), 448–452.
  • Sroga GE, Karim L, Colón W and Vashishth D: ‘Biochemical characterization of major bone-matrix proteins using nanoscale-size bone samples and proteomics methodology’, Mol. Cell Proteomics, 2011, 10, (9), M110.006718.
  • Currey JD: ‘What determines the bending strength of compact bone?’, J. Exp. Biol., 1999, 202, (18), 2495–2503.
  • Currey JD: ‘Role of collagen and other organics in the mechanical properties of bone’, Osteoporos Int., 2003, 14, (5), 29–36.
  • Currey JD, Brear K and Zioupos P: ‘The effects of ageing and changes in mineral content in degrading the toughness of human femora’, J. Biomech., 1996, 29, (2), 257–260.
  • Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J and Boskey AL: ‘Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls’, J. Bone Miner. Res., 2013, 28, (1), 150–161.
  • Launey ME, Buehler MJ and Ritchie RO: ‘On the mechanistic origins of toughness in bone’, Annu. Rev. Mater. Sci., 2010, 40, (1), 25–53.
  • Buehler MJ: ‘Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies’, J. Mech. Behav. Biomed., 2008, 1, (1), 59–67.
  • Buehler MJ: ‘Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization’, Nanotechnology, 2007, 18, (29), 295102.
  • Thurner PJ, Erickson B, Jungmann R, Schriock Z, Weaver JC, Fantner GE, Schitter G, Morse DE and Hansma PK: ‘High-speed photography of compressed human trabecular bone correlates whitening to microscopic damage’, Eng. Fract. Mech., 2007, 74, (12), 1928–1941.
  • Fantner GE, Adams J, Turner P, Thurner PJ, Fisher LW and Hansma PK: ‘Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy’, Nano. Lett., 2007, 7, (8), 2491–2498.
  • Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P: ‘Cooperative deformation of mineral and collagen in bone at the nanoscale’, P. Natl. Acad. Sci., 2006, 103, (47), 17741–17746.
  • Tai K, Dao M, Suresh S, Palazoglu A and Ortiz C: ‘Nanoscale heterogeneity promotes energy dissipation in bone’, Nat. Mater., 2007, 6, 454–462.
  • Ural A and Vashishth D: ‘Interactions between microstructural and geometrical adaptation in human cortical bone’, J. Orthop. Res., 2006, 24, (7), 1489–1498.
  • Yeni YN, Brown CU, Wang Z and Norman TL: ‘The influence of bone morphology on fracture toughness of the human femur and tibia’, Bone, 1997, 21, (5), 453–459.
  • McCalden RW, McGeough JA, Barker MB and Court-Brown CM: ‘Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure’, J. Bone Joint Surg. Am., 1993, 75, (8), 1193–1205.
  • Busse B, Hahn M, Schinke T, Püschel K, Duda GN and Amling M: ‘Reorganization of the femoral cortex due to age-, sex-, and endoprosthetic-related effects emphasized by osteonal dimensions and remodeling’, J. Biomed. Mater. Res. A, 2010, 92A, (4), 1440–1451.
  • Nalla R.K., Kruzic J.J., Kinney J.H., Balooch M., Ager J.W. 3rd and Ritchie R.O.: ‘Role of microstructure in the aging-related deterioration of the toughness of human cortical bone’, Mat. Sci. Eng. C, 2006, 26, (8), 1251–1260.
  • Nyssen-Behets C, Duchesne PY and Dhem A: ‘Structural changes with aging in cortical bone of the human tibia’, Gerontology, 1997, 43, (6), 316–325.
  • Britz HM, Thomas CDL, Clement JG and Cooper DML: ‘The relation of femoral osteon geometry to age, sex, height and weight’, Bone, 2009, 45, (1), 77–83.
  • Ural A and Vashishth D: ‘Effects of intracortical porosity on fracture toughness in aging human bone: a microCT-based cohesive finite element study’, J. Biomech. Eng., 2007, 129, (5), 625–631.
  • Evans FG and Bang S: ‘Differences and relationships between the physical properties and microscopic structure of human femoral, tibial and fibular cortical bone’, Am. J. Anat., 1967, 120, 79–88.
  • Evans FG and Vincentelli R: ‘Relations of the compressive properties of human cortical bone to histological structure and calcification’, J. Biomech., 1974, 7, (1), 1–10.
  • Vincentelli R and Grigorov M: ‘The effect of Haversian remodeling on the tensile properties of human cortical bone’, J. Biomech., 1985, 18, (3), 201–207.
  • Carter DR and Hayes WC: ‘Compact bone fatigue damage: a microscopic examination’, Clin. Orthop. Relat. Res., 1977, 127, 265–274.
  • Hiller LP, Stover SM, Gibson VA, Gibeling JC, Prater CS, Hazelwood SJ, Yeh OC and Martin RB: ‘Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue’, J. Orthop. Res., 2003, 21, (3), 481–488.
  • Kennedy OD, Brennan O, Mauer P, Rackard SM, O’Brien FJ, Taylor D and Lee TC: ‘The effects of increased intracortical remodeling on microcrack behaviour in compact bone’, Bone, 2008, 43, (5), 889–893.
  • O’Brien FJ, Taylor D and Clive Lee T: ‘The effect of bone microstructure on the initiation and growth of microcracks’, J. Orthop. Res., 2005, 23, (2), 475–480.
  • Schaffler MB, Choi K and Milgrom C: ‘Aging and matrix microdamage accumulation in human compact bone’, Bone, 1995, 17, (6), 521–525.
  • Taylor D: ‘Microcrack growth parameters for compact bone deduced from stiffness variations’, J. Biomech., 1998, 31, (7), 587–592.
  • Zioupos P and Currey JD: ‘Changes in the stiffness, strength, and toughness of human cortical bone with age’, Bone, 1998, 22, (1), 57–66.
  • Boyce TM, Fyhrie DP, Glotkowski MC, Radin EL and Schaffler MB: ‘Damage type and strain mode associations in human compact bone bending fatigue’, J. Orthop. Res., 1998, 16, (3), 322–329.
  • Norman TL and Wang Z: ‘Microdamage of human cortical bone: incidence and morphology in long bones’, Bone, 1997, 20, (4), 375–379.
  • Burr DB: ‘The contribution of the organic matrix to bone’s material properties’, Bone, 2002, 31, (1), 8–11.
  • Skedros JG, Holmes JL, Vajda EG and Bloebaum RD: ‘Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective’, Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2005, 286, (1), 781–803.
  • Zimmermann EA, Launey ME and Ritchie RO: ‘The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone’, Biomaterials, 2010, 31, (20), 5297–5305.
  • Katsamenis OL, Chong HMH, Andriotis OG and Thurner PJ: ‘Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level’, J. Mech. Behav. Biomed., 2013, 17, 152–165.
  • Guo XE, He M.-Y, Goldstein SA: ‘Understanding cement line interface in bone tissue: a linear fracture mechanics approach’, ASME-BED, 1995, 29, 303–304.
  • Yeni YN and Norman TL: ‘Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth’, J. Biomed. Mater. Res., 2000, 51, (3), 504–509.
  • Guo XE, Liang LC and Goldstein SA: ‘Micromechanics of osteonal cortical bone fracture’, J. Biomech. Eng., 1998, 120, (1), 112–117.
  • Mischinski S and Ural A: ‘Interaction of microstructure and microcrack growth in cortical bone: a finite element study’, Comput. Methods Biomech. Biomed. Engin., 2013, 16, 81–94.
  • Mischinski S and Ural A: ‘Finite element modeling of microcrack growth in cortical bone’, J. Appl. Mech., 2011, 78, (4), 041016.
  • Najafi AR, Arshi AR, Eslami MR, Fariborz S and Moeinzadeh MH: ‘Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties’, J. Biomech., 2007, 40, (12), 2788–2795.
  • Advani SH, Lee TS, Martin RB: ‘Analysis of crack arrest by cement lines in osteonal bone’, in ‘Advances in Bioengineering’, (ed. A. G. Erdman), 57–88; 1987, New York, ASME.
  • Budyn E and Hoc T: ‘Analysis of micro fracture in human Haversian cortical bone under transverse tension using extended physical imaging’, Int. J. Numer. Meth. Eng., 2010, 82, (8), 940–965.
  • Abdel-Wahab AA, Maligno AR and Silberschmidt VV: ‘Micro-scale modelling of bovine cortical bone fracture: analysis of crack propagation and microstructure using X-FEM’, Comp. Mater. Sci., 2012, 52, (1), 128–135.
  • Li S, Abdel-Wahab A, Demirci E and Silberschmidt V: ‘Fracture process in cortical bone: X-FEM analysis of microstructured models’, Int. J. Fract., 2013, 184, 43–55.
  • Parsamian GP and Norman T: ‘Diffuse damage accumulation in the fracture process zone of human cortical bone specimens and its influence on fracture toughness’, J. Mater. Sci. Mater. Med., 2001, 12, (9), 779–783.
  • Vashishth D, Behiri JC and Bonfield W: ‘Crack growth resistance in cortical bone: concept of microcrack toughening’, J. Biomech., 1997, 30, (8), 763–769.
  • Diab T and Vashishth D: ‘Effects of damage morphology on cortical bone fragility’, Bone, 2005, 37, (1), 96–102.
  • Vashishth D, Koontz J, Qiu SJ, Lundin-Cannon D, Yeni YN, Schaffler MB and Fyhrie DP: ‘In vivo diffuse damage in human vertebral trabecular bone’, Bone, 2000, 26, (2), 147–152.
  • Burr DB and Stafford T: ‘Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage’, Clin. Orthop. Relat. Res., 1990, (260), 305–308.
  • Reilly GC and Currey JD: ‘The effects of damage and microcracking on the impact strength of bone’, J. Biomech., 2000, 33, (3), 337–343.
  • Diab T, Condon KW, Burr DB and Vashishth D: ‘Age-related change in the damage morphology of human cortical bone and its role in bone fragility’, Bone, 2006, 38, (3), 427–431.
  • Diab T and Vashishth D: ‘Morphology, localization and accumulation of in vivo microdamage in human cortical bone’, Bone, 2007, 40, (3), 612–618.
  • O’Brien FJ, Taylor D and Lee TC: ‘Microcrack accumulation at different intervals during fatigue testing of compact bone’, J. Biomech., 2003, 36, (7), 973–980.
  • Zioupos P: ‘Accumulation of in vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone’, J. Microsc., 2001, 201, (2), 270–278.
  • Norman TL, Yeni YN, Brown CU and Wang Z: ‘Influence of microdamage on fracture toughness of the human femur and tibia’, Bone, 1998, 23, (3), 303–306.
  • Yeni YN and Fyhrie DP: ‘Fatigue damage-fracture mechanics interaction in cortical bone’, Bone, 2002, 30, (3), 509–514.
  • Nalla RK, Kinney JH and Ritchie RO: ‘Mechanistic fracture criteria for the failure of human cortical bone’, Nat. Mater., 2003, 2, (3), 164–168.
  • Koester KJ, Ager J and Ritchie R: ‘The true toughness of human cortical bone measured with realistically short cracks’, Nat. Mater., 2008, 7, (8), 672–677.
  • Norman TL, Vashishth D and Burr DB: ‘Fracture toughness of human bone under tension’, J. Biomech., 1995, 28, (3), 309–320.
  • Wang XD, Masilamani NS, Mabrey JD, Alder ME and Agrawal CM: ‘Changes in the fracture toughness of bone may not be reflected in its mineral density, porosity, and tensile properties’, Bone, 1998, 23, (1), 67–72.
  • Bonfield W, Behiri J and Charalambides C: ‘Orientation and age-related dependence of the fracture toughness of cortical bone’, in ‘Biomechanics: current interdisciplinary research’, (ed. S. M. Perren and E Schneider), 185–189; 1985, Springer, Netherlands.
  • Melvin JW: ‘Fracture mechanics of bone’, J. Biomech. Eng., 1993, 115, (4B), 549–554.
  • Nalla RK, Kruzic JJ, Kinney JH and Ritchie RO: ‘Effect of aging on the toughness of human cortical bone: evaluation by R-curves’, Bone, 2004, 35, (6), 1240–1246.
  • Akkus O and Rimnac CM: ‘Fracture resistance of gamma radiation sterilized cortical bone allografts’, J. Orthop. Res., 2001, 19, (5), 927–934.
  • Norman TL, Nivargikar SV and Burr DB: ‘Resistance to crack growth in human cortical bone is greater in shear than in tension’, J. Biomech., 1996, 29, (8), 1023–1031.
  • Wang X, Mabrey JD and Agrawal CM: ‘An interspecies comparison of bone fracture properties’, Biomed. Mater. Eng., 1998, 8, (1), 1–9.
  • Chan KS, Chan CK and Nicolella DP: ‘Relating crack-tip deformation to mineralization and fracture resistance in human femur cortical bone’, Bone, 2009, 45, (3), 427–434.
  • Koester KJ, Barth HD and Ritchie RO: ‘Effect of aging on the transverse toughness of human cortical bone: Evaluation by R-curves’, J. Mech. Behav. Biomed. Mater., 2011, 4, (7), 1504–1513.
  • Brown CU, Yeni YN and Norman TL: ‘Fracture toughness is dependent on bone location – a study of the femoral neck, femoral shaft, and the tibial shaft’, J. Biomed. Mater. Res., 2000, 49, (3), 380–389.
  • Vashishth D: ‘Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements’, J. Biomech., 2004, 37, (6), 943–946.
  • Lee TC, Staines A and Taylor D: ‘Bone adaptation to load: microdamage as a stimulus for bone remodelling’, J. Anat., 2002, 201, (6), 437–446.
  • Zimmermann EA, Launey ME, Barth HD and Ritchie RO: ‘Mixed-mode fracture of human cortical bone’, Biomaterials, 2009, 30, (29), 5877–5884.
  • Ural A and Vashishth D: ‘Cohesive finite element modeling of age-related toughness loss in human cortical bone’, J. Biomech., 2006, 39, (16), 2974–2982.
  • Ural A and Vashishth D: ‘Anisotropy of age-related toughness loss in human cortical bone: a finite element study’, J. Biomech., 2007, 40, (7), 1606–1614.
  • Ural A, Zioupos P, Buchanan D and Vashishth D: ‘The effect of strain rate on fracture toughness of human cortical bone: a finite element study’, J. Mech. Behav. Biomed., 2011, 4, (7), 1021–1032.
  • Yang QD, Cox BN, Nalla RK and Ritchie RO: ‘Fracture length scales in human cortical bone: the necessity of nonlinear fracture models’, Biomaterials, 2006, 27, (9), 2095–2113.
  • Feerick EM, Liu X and McGarry P: ‘Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM)’, J. Mech. Behav. Biomed., 2013, 20, 77–89.
  • Li S, Abdel-Wahab A and Silberschmidt VV: ‘Analysis of fracture processes in cortical bone tissue’, Eng. Fract. Mech., 2013, 110, 448–458.
  • Besdo S and Vashishth D: ‘Extended finite element models of introcortical porosity and heterogeneity in cortical bone’, Comp. Mater. Sci., 2012, 64, 301–305.
  • Braidotti P, Branca FP and Stagni L: ‘Scanning electron microscopy of human cortical bone failure surfaces’, J. Biomech., 1997, 30, (2), 155–162.
  • Yeni YN and Fyhrie DP: ‘A rate-dependent microcrack-bridging model that can explain the strain rate dependency of cortical bone apparent yield strength’, J. Biomech., 2003, 36, (9), 1343–1353.
  • Krug R, Burghardt AJ, Majumdar S and Link TM: ‘High-resolution imaging techniques for the assessment of osteoporosis’, Radiol. Clin. North Am., 2010, 48, (3), 601–621.
  • Nishiyama K and Shane E: ‘Clinical imaging of bone microarchitecture with HR-pQCT’, Curr. Osteoporos. Rep., 2013, 11, (2):147-55.
  • Lotz JC, Cheal EJ and Hayes WC: ‘Fracture prediction for the proximal femur using finite element models: part I – linear analysis’, J. Biomech. Eng., 1991, 113, (4), 353–360.
  • Augat P, Reeb H and Claes LE: ‘Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell’, J. Bone. Miner. Res., 1996, 11, (9), 1356–1363.
  • Muller ME, Webber CE and Bouxsein ML: ‘Predicting the failure load of the distal radius’, Osteoporos. Int., 2003, 14, (4), 345–352.
  • Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA and Edwards WT: ‘Cortical and trabecular bone contribute strength to the osteopenic distal radius’, J. Orthop. Res., 1994, 12, (2), 211–218.
  • Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA and Fyhrie DP: ‘Femoral strength is better predicted by finite element models than QCT and DXA’, J. Biomech., 1999, 32, (10), 1013–1020.
  • Myers ER, Hecker AT, Rooks DS, Hipp JA and Hayes WC: ‘Geometric variables from DXA of the radius predict forearm fracture load in vitro’, Calcif. Tissue Int., 1993, 52, (3), 199–204.
  • Keyak JH, Rossi SA, Jones KA and Skinner HB: ‘Prediction of femoral fracture load using automated finite element modeling’, J. Biomech., 1997, 31, (2), 125–133.
  • Spruijt S, Van Der Linden JC, Sander Dijkstra PD, Wiggers T, Oudkerk M, Snijders CJ, Van Keulen F, Verhaar JAN, Weinans H and Swierstra BA: ‘Prediction of torsional failure in 22 cadaver femora with and without simulated subtrochanteric metastatic defects: a CT scan-based finite element analysis’, Acta Orthop., 2006, 77, (3), 474–481.
  • Yang KH, Shen KL, Demetropoulos CK, King AI, Kolodziej P, Levine RS and Fitzgerald RH Jr: ‘The relationship between loading conditions and fracture patterns of the proximal femur’, J. Biomech. Eng., 1996, 118, (4), 575–578.
  • Wehrli FW: ‘Magnetic resonance of calcified tissues’, J. Magn. Reson., 2013, 229, 35–48.
  • Bouxsein ML, Myburgh KH, Meulen MCH, Lindenberger E and Marcus R: ‘Age-related differences in cross-sectional geometry of the forearm bones in healthy women’, Calcif. Tissue Int., 1994, 54, (2), 113–118.
  • Ruff C and Hayes W: ‘Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging’, Science, 1982, 217, (4563), 945–948.
  • Stein MS, Thomas CDL, Feik SA, Wark JD and Clement JG: ‘Bone size and mechanics at the femoral diaphysis across age and sex’, J. Biomech., 1998, 31, (12), 1101–1110.
  • Ding M, Odgaard A, Linde F and Hvid I: ‘Age-related variations in the microstructure of human tibial cancellous bone’, J. Orthop. Res., 2002, 20, (3), 615–621.
  • Lochmuller EM, Lill CA, Kuhn V, Schneider E and Eckstein F: ‘Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites’, J. Bone. Miner. Res., 2002, 17, (9), 1629–1638.
  • Ashe MC, Khan KM, Kontulainen SA, Guy P, Liu D, Beck TJ and McKay HA: ‘Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation’, Osteoporos. Int., 2006, 17, (8), 1241–1251.
  • Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF and Reeve J: ‘Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis’, J. Bone Miner. Res., 1999, 14, (1), 111–119.
  • Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, Beck TJ and Reeve J: ‘Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography’, J. Bone Miner. Res., 2001, 16, (7), 1318–1328.
  • Eswaran SK, Gupta A, Adams MF and Keaveny TM: ‘Cortical and trabecular load sharing in the human vertebral body’, J. Bone Miner. Res., 2006, 21, (2), 307–314.
  • Holzer G, von Skrbensky G, Holzer LA and Pichl W: ‘Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength’, J. Bone Miner. Res., 2009, 24, (3), 468–474.
  • Pistoia W, van Rietbergen B and Ruegsegger P: ‘Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius’, Bone, 2003, 33, (6), 937–945.
  • Walker MD, Liu XS, Stein E, Zhou B, Bezati E, McMahon DJ, Udesky J, Liu G, Shane E and Guo XE: ‘Differences in bone microarchitecture between postmenopausal Chinese-American and white women’, J. Bone Miner. Res. 2011, 26, (7), 1392–1398.
  • Zebaze RMD, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ and Seeman E: ‘Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study’, Lancet, 2010, 375, (9727), 1729–1736.
  • Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F and Ruegsegger P: ‘Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images’, Bone, 2002, 30, (6), 842–848.
  • Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, Shane E and Guo XE: ‘High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone’, J. Bone Miner. Res., 2010, 25, (4), 746–756.
  • Varga P, Pahr DH, Baumbach S and Zysset PK: ‘HR-pQCT based FE analysis of the most distal radius section provides an improved prediction of Colles’ fracture load in vitro’, Bone, 2010, 47, (5), 982–988.
  • Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML and Delmas PD: ‘Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women’, J. Bone Miner. Res., 2008, 23, (3), 392–399.
  • Vico L, Zouch M, Amirouche A, Frère D, Laroche N, Koller B, Laib A, Thomas T and Alexandre C: ‘High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures’, J. Bone Miner. Res., 2008, 23, (11), 1741–1750.
  • Vilayphiou N, Boutroy S, Sornay-Rendu E, van Rietbergen B, Munoz F, Delmas PD and Chapurlat R: ‘Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women’, Bone, 2010, 46, (4), 1030–1037.
  • Melton L.J. 3rd, Riggs B.L., van Lenthe G.H., Achenbach S.J., Muller R., Bouxsein M.L., Amin S., Atkinson E.J. and Khosla S.: ‘Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women’, J. Bone Miner. Res., 2007, 22, (9), 1442–1448.
  • Sornay-Rendu E, Boutroy S, Munoz F and Delmas PD: ‘Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study’, J. Bone Miner. Res., 2007, 22, (3), 425–433.
  • Nishiyama KK, Macdonald HM, Hanley DA and Boyd SK: ‘Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT’, Osteoporos. Int., 2013, 24, (5):1733–1740.
  • Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM and Majumdar S: ‘Age and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia’, J. Bone Miner. Res., 2010, 25, (5), 983–993.
  • MacNeil JA and Boyd SK: ‘Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography’, Bone, 2007, 41, (1), 129–137.
  • Rajapakse CS, Leonard MB, Bhagat YA, Sun W, Magland JF and Wehrli FW: ‘Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation’, Radiology, 2012, 262, (3), 912–920.
  • Wehrli FW, Rajapakse CS, Magland JF and Snyder PJ: ‘Mechanical implications of estrogen supplementation in early postmenopausal women’, J. Bone Miner. Res., 2010, 25, (6), 1406–1414.
  • Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PR, Kopperdahl DL and Keaveny TM: ‘Finite element analysis of the proximal femur and hip fracture risk in older men’, J. Bone Miner. Res., 2009, 24, (3), 475–483.
  • Melton LJ, Riggs BL, Keaveny TM, Achenbach SJ, Hoffmann PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA and Khosla S: ‘Structural determinants of vertebral fracture risk’, J. Bone Miner. Res., 2007, 22, (12), 1885–1892.
  • Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL and Black DM: ‘Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans’, J. Bone Miner. Res., 2008, 23, (12), 1974–1982.
  • Ural A: ‘Prediction of Colles’ fracture load in human radius using cohesive finite element modeling’, J. Biomech., 2009, 42, (1), 22–28.
  • Ural A, Bruno P, Zhou B, Shi XT and Guo XE: ‘A new fracture assessment approach coupling HR-pQCT imaging and fracture mechanics-based finite element modeling’, J. Biomech., 2013, 46, 1305–1311.
  • Buchanan D and Ural A: ‘Finite element modeling of the influence of hand position and bone properties on the Colles’ fracture load during a fall’, J. Biomech. Eng., 2010, 132, (8), 081007.
  • Tommasini SM, Nasser P, Schaffler MB and Jepsen KJ: ‘Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk’, J. Bone Miner. Res., 2005, 20, (8), 1372–1380.
  • Jepsen K: ‘Functional interactions among morphologic and tissue quality traits define bone quality’, Clin. Orthop. Relat. Res., 2011, 469, (8), 2150–2159.
  • Tommasini SM, Nasser P, Hu B and Jepsen KJ: ‘Biological co-adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility’, J. Bone Miner. Res., 2008, 23, (2), 236–246.
  • Yeni YN, Brown CU, Gruen TA and Norman TL: ‘The relationships between femoral cortex geometry and tissue mechanical properties’, J. Mech. Behav. Biomed., 2013, 21, 9–16.
  • Bonadio J, Jepsen KJ, Mansoura MK, Jaenisch R, Kuhn JL and Goldstein SA: ‘A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility’, J. Clin. Invest., 1993, 92, (4), 1697–1705.
  • Kozloff KM, Carden A, Bergwitz C, Forlino A, Uveges TE, Morris MD, Marini JC and Goldstein SA: ‘Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength’, J. Bone Miner. Res., 2004, 19, (4), 614–622.
  • Wallace JM, Rajachar RM, Allen MR, Bloomfield SA, Robey PG, Young MF and Kohn DH: ‘Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific’, Bone, 2007, 40, (4), 1120–1127.
  • Lanyon LE, Hampson WGJ, Goodship AE and Shah JS: ‘Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft’, Acta Orthop. Scand., 1975, 46, (2), 256–268.
  • Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E and Simkin A: ‘In vivo measurement of human tibial strains during vigorous activity’, Bone, 1996, 18, (5), 405–410.
  • Hansen U, Zioupos P, Simpson R, Currey JD and Hynd D: ‘The effect of strain rate on the mechanical properties of human cortical bone’, J. Biomech. Eng., 2008, 130, (1), 011011.
  • Crowninshield R and Pope M: ‘The response of compact bone in tension at various strain rates’, Ann. Biomed. Eng., 1974, 2, (2), 217–225.
  • Evans G.P., Behiri J.C., Vaughan L.C. and Bonfield W. ‘The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse’, Equine Vet. J., 1992, 24, (2), 125–128.
  • Piekarski K: ‘Fracture of bone’, J. Appl. Phys., 1970, 41, (1), 215–223.
  • Robertson DM and Smith DC: ‘Compressive strength of mandibular bone as a function of microstructure and strain rate’, J. Biomech., 1978, 11, (10–12), 455–471.
  • Behiri JC and Bonfield W: ‘Crack velocity dependence of longitudinal fracture in bone’, J. Mater. Sci., 1980, 15, (7), 1841–1849.
  • Behiri JC and Bonfield W: ‘Fracture mechanics of bone – the effects of density, specimen thickness and crack velocity on longitudinal fracture’, J. Biomech., 1984, 17, (1), 25–34.
  • Adharapurapu RR, Jiang F and Vecchio KS: ‘Dynamic fracture of bovine bone’, Mat. Sci. Eng. C, 2006, 26, (8), 1325–1332.
  • Kulin R, Jiang F and Vecchio K: ‘Aging and loading rate effects on the mechanical behavior of equine bone’, JOM-J. Min. Met. Mat. S, 2008, 60, (6), 39–44.
  • Charoenphan S and Polchai A: ‘Finite element modeling for strain rate dependency of fracture resistance in compact bone’, J. Biomech. Eng., 2007, 129, (1), 20–25.
  • Kulin R, Jiang F and Vecchio KS: ‘Effects of age and loading rate on equine cortical bone failure’, J. Mech. Behav. Biomed., 2011, 4, (1), 57–75.
  • Zioupos P, Hansen U and Currey JD: ‘Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure’, J. Biomech., 2008, 41, (14), 2932–2939.
  • Kulin RM, Jiang F and Vecchio KS: ‘Loading rate effects on the R-curve behavior of cortical bone’, Acta Biomater., 2011, 7, (2), 724–732.
  • Tomar V: ‘Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method’, J. Biomech. Eng., 2008, 130, (2), 21021.
  • Ural A, Zioupos P, Buchanan D and Vashishth D: ‘Evaluation of the influence of strain rate on Colles’ fracture load’, J. Biomech., 2012, 45, (10), 1854–1857.
  • Kanis JA: ‘Diagnosis of osteoporosis and assessment of fracture risk’, Lancet, 2002, 359, (9321), 1929–1936.
  • Kanis JA, Oden A, Johnell O, Johansson H, Laet C, Brown J, Burckhardt P, Cooper C, Christiansen C, Cummings S, Eisman JA, Fujiwara S, Glüer C, Goltzman D, Hans D, Krieg MA, Croix A, McCloskey E, Mellstrom D, Melton LJ III, Pols H, Reeve J, Sanders K, Schott AM, Silman A, Torgerson D, Staa T, Watts NB and Yoshimura N: ‘The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women’, Osteoporos. Int., 2007, 18, (8), 1033–1046.
  • Rubin KH, Friis-Holmberg T, Hermann AP, Abrahamsen B and Brixen K: ‘Risk assessment tools to identify women with increased risk of osteoporotic fracture: Complexity or simplicity? A systematic review’, J. Bone Miner. Res., 2013, 28, (8), 1701–1717.
  • Kanis JA, McCloskey EV, Johansson H, Oden A, Ström O and Borgström F: ‘Development and use of FRAX® in osteoporosis’, Osteoporos. Int., 2010, 21, (2), 407–413.
  • Weinkamer R and Fratzl P: ‘Mechanical adaptation of biological materials – the examples of bone and wood’, Mat. Sci. Eng. C, 2011, 31, (6), 1164–1173.
  • O’Brien FJ, Taylor D and Lee TC: ‘An improved labelling technique for monitoring microcrack growth in compact bone’, J. Biomech., 2002, 35, (4), 523–526.
  • Vashishth D: ‘Hierarchy of bone microdamage at multiple length scales’, Int. J. Fatigue, 2007, 29, (6), 1024–1033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.