563
Views
15
CrossRef citations to date
0
Altmetric
Full Critical Reviews

Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review

, &
Pages 312-329 | Received 05 Jan 2015, Accepted 09 Mar 2015, Published online: 04 May 2015

References

  • Sun C. Q.: ‘Size dependence of nanostructures: impact of bond order deficiency’, Prog. Solid State Chem., 2007, 35, 1–159.
  • Gao G.: ‘Nanostructures & nanomaterials’, Vol. 3, ; 2004, London, Imperial College Press.
  • Rao A. M., Richter E., Bandow S., Chase B., Eklund P. C., Williams K. A., Fang S., Subbaswamy K. R., Menon M., Thess A., Smalley R. E., Dresselhaus G. and Dresselhaus M. S.: ‘Diameter-selective Raman scattering from vibrational modes in carbon nanotubes’, Science, 1997, 275, 187–191.
  • Dresselhaus M. S., Dresselhaus G., Saito R. and Jorio A.: ‘Raman spectroscopy of carbon nanotubes’, Phys. Rep., 2005, 409, 47–99.
  • Eisler H. J., Gilb S., Hennrich F. H. and Kappes M. M.: ‘Low frequency raman active vibrations in fullerenes. 1. Monopolar modes’, J. Phys. Chem. A, 2000, 104, 1762–1768.
  • Portales H., Saviot L., Duval E., Fujii M., Hayashi S., Del Fatti N. and Vallée F.: ‘Resonant Raman scattering by breathing modes of metal nanoparticles’, J. Chem. Phys., 2001, 115, (8), 3444–3447.
  • Lange H., Mohr M., Artemyev M., Woggon U. and Thomsen C.: ‘Direct observation of the radial breathing mode in CdSe nanorods’, Nano Lett., 2008, 8, 4614–4617.
  • Yu F., Zhou H., Zhang Z., Tang D., Chen M., Yang H., Wang G., Yang H., Gu C. and Sun L.: ‘Experimental observation of radial breathing-like mode of graphene nanoribbons’, Appl. Phys. Lett., 2012, 100, 101904.
  • Jorio A., Saito R., Dresselhaus G. and Dresselhaus M. S.: ‘Raman spectroscopy in graphene related systems’; 2009, Singapore, Wiley-VCH.
  • Thomsen C. and Reich S.: ‘Double resonant Raman scattering in graphite’, Phys. Rev. Lett., 2000, 85, 5214–5217.
  • Li L. and Chang T.: ‘Explicit solution for G-band mode frequency of single-walled carbon nanotubes’, Acta Mech. Solida Sin., 2009, 22, 571–583.
  • Dresselhaus M. S. and Eklund P. C.: ‘Phonons in carbon nanotubes’, Adv. Phys., 2000, 49, (6), 705–814.
  • Kuzmany H., Plank W., Hulman M., Kramberger C., Grüneis A., Pichler T., Peterlik H., Kataura H. and Achiba Y.: ‘Determination of SWCNT diameters from the Raman response of the radial breathing mode’, Eur. Phys. J. B, 2001, 22, 307–320.
  • Maultzsch J., Telg H., Reich S. and Thomsen C.: ‘Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment’, Phys. Rev. B, 2005, 72, 205438.
  • Telg H., Thomsen C. and Maultzsch J.: ‘Raman intensities of the radial-breathing mode in carbon nanotubes: the exciton-phonon coupling as a function of (n1, n2)’, J. Nanophotonics, 2010, 4, 041660.
  • Milošević I., Dobardžić E. and Damnjanović M.: ‘Phonons in narrow carbon nanotubes’, Phys. Rev. B, 2005, 72, 085426.
  • Cheng H. C., Liu Y. L., Wu C. H. and Chen W. H.: ‘On radial breathing vibration of carbon nanotubes’, Comput. Methods Appl. Mech. Eng., 2010, 199, 2820–2827.
  • Araujo P. T., Pesce P. B. C., Dresselhaus M. S., Sato K., Saito R. and Jorio A.: ‘Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes’, Phys. E, 2010, 42, 1251–1261.
  • Popov V. N., Henrard L. and Lambin P.: ‘Resonant Raman intensity of the radial breathing mode of single-walled carbon nanotubes within a nonorthogonal tight-binding model’, Nano Lett., 2004, 4, 1795–1799.
  • Ezawa M.: ‘Graphene nanoribbon and graphene nanodisk’, Phys. E, 2008, 40, 1421–1423.
  • Bischoff D., Güttinger J., Dröscher S., Ihn T., Ensslin K. and Stampfer C.: ‘Raman spectroscopy on etched graphene nanoribbons’, J. Appl. Phys., 2011, 109, 073710.
  • Shi J. X., Ni Q. Q., Lei X. W. and Natsuki T.: ‘Nonlocal vibration of embedded double-layer graphene nanoribbons in in-phase and anti-phase modes’, Phys. E, 2012, 44, 1136–1141.
  • Thonhauser T. and Mahan G. D.: ‘Predicted Raman spectra of Si[111] nanowires’, Phys. Rev. B, 2005, 71, 081307(R).
  • Mankad V., Mishra K. K., Gupta S. K., Ravindran T. R. and Jha P. K.: ‘Low frequency Raman scattering from confined acoustic phonons in freestanding silver nanoparticles’, Vib. Spectrosc., 2012, 61, 183–187.
  • Voisin C., Del Fatti N., Christofilos D. and Vallée F.: ‘Time-resolved investigation of the vibrational dynamics of metal nanoparticles’, Appl. Surf. Sci., 2000, 164, 131–139.
  • Hartland G. V., Hu M. and Sader J. E.: ‘Softening of the symmetric breathing mode in gold particles by laser-induced heating’, J. Phys. Chem. B, 2003, 107, 7472–7478.
  • van Dijk M. A., Lippitz M. and Orrit M.: ‘Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry’, Phys. Rev. Lett., 2005, 95, 267406.
  • Crut A., Maioli P., Del Fatti N. and Vallée F.: ‘Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and encapsulation effects’, Ultrasonics, 2015, 56, 98–108.
  • Juvé V., Crut A., Maioli P., Pellarin M., Broyer M., Del Fatti N. and Vallée F.: ‘Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles’, Nano Lett., 2010, 10, 1853–1858.
  • Ruijgrok P. V., Zijlstra P., Tchebotareva A. L. and Orrit M.: ‘Damping of acoustic vibrations of single gold nanoparticles optically trapped in water’, Nano Lett., 2012, 12, 1063–1069.
  • Major T. A., Lo S. S., Yu K. and Hartland G. V.: ‘Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects’, J. Phys. Chem. Lett., 2014, 5, 866–874.
  • White C. T., Robertson D. H. and Mintmire J. W.: ‘Helical and rotational symmetries of nanoscale graphatic tubules’, Phys. Rev. B, 1993, 47, 5485–5488.
  • Rafii-Tabar H.: ‘Computational physics of carbon nanotubes’; 2008, Cambridge, Cambridge University Press.
  • Jishi R. A., Venkataraman L., Dresselhaus M. S. and Dresselhaus G.: ‘Phonon modes in carbon nanotubules’, Chem. Phys. Lett., 1993, 209, 77.
  • Kurti J., Kresse G. and Kuzmany H.: ‘First-principles calculations of the radial breathing mode of single-wall carbon nanotubes’, Phys. Rev. B, 1998, 58, R8869.
  • Sanchez-Portal D., Artacho E., Soler J. M., Rubio A. and Ordejon P.: ‘Ab initio structural, elastic, and vibrational properties of carbon nanotubes’, Phys. Rev. B, 1999, 59, 12678–12688.
  • Jorio A., Saito R., Hafner J. H., Lieber C. M., Hunter M., McClure T., Dresselhaus G. and Dresselhaus M. S.: ‘Structural (n, m) determination of isolated single wall carbon nanotubes by resonant Raman scattering’, Phys. Rev. Lett., 2001, 86, 1118–1121.
  • Dobardzic E., Milosevic I., Nikolic B., Vukovic T. and Damnjanovic M.: ‘Single-wall carbon nanotubes phonon spectra: symmetry-based calculations’, Phys. Rev. B, 2003, 68, 045408.
  • Longhurst M. J. and Quirke N.: ‘The radial breathing mode of carbon nanotubes’, Mol. Simul., 2005, 31, 135.
  • Reich S., Thomsen C. and Maultzsch J.: ‘Carbon nanotubes: basic concepts and physical properties’; 2004, Weinheim, John Wiley & Sons.
  • Araujo P. T., Maciel I. O., Pesce P. B. C., Pimenta M. A., Doorn S. K., Qian H., Hartschuh A., Steiner M., Grigorian L., Hata K. and Jorio A.: ‘Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes’, Phys. Rev. B, 2008, 77, 241403(R).
  • Kürti J., Zólyomi V., Kertesz M. and Sun G. Y.: ‘The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour’, New J. Phys., 2003, 5, 125.
  • Goupalov S., Satishkumar B. and Doorn S. K.: ‘Excitation and chirality dependence of the exciton-phonon coupling in carbon nanotubes’, Phys. Rev. B, 2006, 73, 115401.
  • Telg H., Maultzsch J., Reich S., Hennrich F. and Thomsen C.: ‘Chirality distribution and transition energies of carbon nanotubes’, Phys. Rev. Lett., 2004, 93, 177401.
  • Meyer J. C., Paillet M., Michel T., Moreac A., Neumann A., Duesberg G. S., Roth S. and Sauvajol J.: ‘Raman modes of index-identified freestanding single-walled carbon nanotubes’, Phys. Rev. Lett., 2005, 95, 217401.
  • Lawler H. M., Areshkin D., Mintmire J. W. and White C. T.: ‘Radial-breathing mode frequencies for single-walled carbon nanotubes of arbitrary chirality: first-principles calculations’, Phys. Rev. B, 2005, 72, 233403.
  • Xiao Y., Li Z. M., Yan X. H., Zhang Y., Mao Y. L. and Yang Y. R.: ‘Curvature effect on the radial breathing modes of single-walled carbon nanotubes’, Phys. Rev. B, 2005, 71, 233405.
  • Rols S., Righi A., Alvarez L., Anglaret E., Almairac R., Journet C., Bernier P., Sauvajol J. L., Benito A. M., Maser W. K., Muñoz E., Martinez M. T., de la Fuente G. F., Girard A. and Ameline J. C.: ‘Diameter distribution of single wall carbon nanotubes in nanobundles’, Eur. Phys. J.B, 2000, 18, 201–205.
  • Agrawal B. K., Agrawal S. and Srivastava R.: ‘Ab initio study of small diameter (6, 6) armchair carbon nanoropes: orientational dependent properties’, J. Phys. Condens. Matter., 2003, 15, 6931–6942.
  • Popov V. N. and Lambin P.: ‘Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes’, Phys. Rev. B, 2006, 73, 085407.
  • Chang T.: ‘Explicit solution of the radial breathing mode frequency of single-walled carbon nanotubes’, Acta Mech. Sin., 2007, 23, 159–162.
  • Chang T.: ‘A molecular based anisotropic shell model for single-walled carbon nanotubes’, J. Mech. Phys. Solids, 2010, 58, 1422–1433.
  • Ghavanloo E. and Fazelzadeh S. A.: ‘Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect’, Appl. Math. Model., 2012, 36, 4988–5000.
  • Basirjafari S., Esmaielzadeh Khadem S. and Malekfar R.: ‘Validation of shell theory for modeling the radial breathing mode of a single-walled carbon nanotube’, Int. J. Eng. Trans. A, 2013, 26, (4), 447–454.
  • Ebbesen T. W. and Takada T.: ‘Topological and sp3 defect structures in nanotubes’, Carbon, 1995, 33, 973–978.
  • Singh D. K., Iyer P. K. and Giri P. K.: ‘Optical signature of structural defects in single walled and multiwalled carbon nanotubes’, J. Nanosci. Nanotechnol., 2009, 9, 1–6.
  • Saidi W. A.: ‘Effects of topological defects and diatom vacancies on characteristic vibration modes and Raman intensities of zigzag single-walled carbon nanotubes’, J. Phys. Chem. A, 2014, 118, 7235–7241.
  • Saidi W. A. and Norman P.: ‘Spectroscopic signatures of topological and diatom-vacancy defects in single-walled carbon nanotubes’, Phys. Chem. Chem. Phys., 2014, 16, 1479.
  • Saidi W. A. and Norman P.: ‘Probing single-walled carbon nanotube defect chemistry using resonance Raman spectroscopy’, Carbon, 2014, 67, 17–26.
  • Wang Y. F., Cao X. W., Hu S. F., Liu Y. Y. and Lan G. X.: ‘Graphical method for assigning Raman peaks of radial breathing modes of single-wall carbon nanotubes’, Chem. Phys. Lett., 2001, 336, 47–52.
  • Bandow S., Asaka S., Saito Y., Rao A. M., Grigorian L., Richter E. and Eklund P. C.: ‘Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes’, Phys. Rev. Lett., 1998, 80, 3779–3782.
  • Saito R., Takcya T., Kimiira T., Dresselhaus G. and Drcsselhaus M. S.: ‘Raman intensity of single-wall carbon nanotubes’, Phys. Rev. B, 1998, 57, 4145.
  • ánchez-Portall D. S., Artacho E. and Soler J. M.: ‘Ab initio structural, elastic, and vibrational properties of carbon nanotubes’, Phys. Rev. B, 1999, 59, 12678–12688.
  • Gupta S. S. and Batra R. C.: ‘Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes’, Comput. Mater. Sci., 2008, 43, 715–723.
  • Batra R. C. and Gupta S. S.: ‘Wall thickness and radial breathing modes of single-walled carbon nanotubes’, J. Appl. Mech., 2008, 75, 061010.
  • Lei X. W., Ni Q. Q., Shi J. X. and Natsuki T.: ‘Radial breathing mode of carbon nanotubes subjected to axial pressure’, Nanoscale Res. Lett., 2011, 6, 492.
  • Basirjafari S., Esmaeilzadeh Khadem S. and Malekfar R.: ‘Radial breathing mode frequencies of carbon nanotubes for determination of their diameters’, Curr. Appl. Phys., 2013, 13, 599–609.
  • Longhurst M. J. and Quirke N.: ‘The environmental effect on the radial breathing mode of carbon nanotubes in water’, J. Chem. Phys., 2006, 124, 234708.
  • Longhurst M. J. and Quirke N.: ‘The environmental effect on the radial breathing mode of carbon nanotubes. II. Shell model approximation for internally and externally adsorbed fluids’, J. Chem. Phys., 2006, 125, 184705.
  • Araujo P. T. and Jorio A.: ‘The role of environmental effects on the optical transition energies and radial breathing mode frequency of single wall carbon nanotubes’, Phys. Status Solidi B, 2008, 245, (10), 2201–2204.
  • Araujo P. T., Fantini C., Lucchese M. M., Dresselhaus M. S. and Jorio A.: ‘The effect of environment on the radial breathing mode of super growth single wall carbon nanotubes’, Appl. Phys. Lett., 2009, 95, 261902.
  • Bachilo S. M., Balzano L., Herrera J. E., Pompeo F., Resasco D. E. and Weisman R. B.: ‘Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst’, J. Am. Chem. Soc., 2003, 125, 11186–11187.
  • Araujo P. T., Doorn S. K., Kilina S., Tretiak S., Einarsson E., Maruyama S., Chacham H., Pimenta M. A. and Jorio A.: ‘Third and fourth optical transitions in semiconducting carbon nanotubes’, Phys. Rev. Lett., 2007, 98, 067401.
  • Chiashi S., Murakami Y., Miyauchi Y. and Maruyama S.: ‘Temperature dependence of Raman scattering from single-walled carbon nanotubes: undefined radial breathing mode peaks at high temperatures’, Jpn. J. Appl. Phys., 2008, 47, 2010–2015.
  • Raravikar N. R., Keblinski P., Rao A. M., Dresselhaus M. S., Schadler L. S. and Ajayan P. M.: ‘Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes’, Phys. Rev. B, 2002, 66, 235424.
  • Uchida T., Tazawa M., Sakai H., Yamazaki A. and Kobayashi Y.: ‘Radial breathing modes of single-walled carbon nanotubes in resonance Raman spectra at high temperature and their chiral index assignment’, Appl. Surf. Sci., 2008, 254, 7591–7595.
  • Ghavanloo E. and Fazelzadeh S. A.: ‘Effect of temperature change on the radial breathing mode frequency of single-walled carbon nanotubes’, Nano, 2013, 8, 1350057.
  • Lucas M. and Young R. J.: ‘Effect of uniaxial strain deformation upon the Raman radial breathing modes of single-wall carbon nanotubes in composites’, Phys. Rev. B, 2004, 69, 085405.
  • Lucas M. and Young R. J.: ‘Raman spectroscopic study of the effect of strain on the radial breathing modes of carbon nanotubes in epoxy/SWNT composites’, Compos. Sci. Technol., 2004, 64, 2297–2302.
  • Lucas M. and Young R. J.: ‘Unique identification of single-walled carbon nanotubes in composites’, Compos. Sci. Technol., 2007, 67, 2135–2149.
  • Lucas M. and Young R. J.: ‘Effect of residual stresses upon the Raman radial breathing modes of nanotubes in epoxy composites’, Compos. Sci. Technol., 2007, 67, 840–843.
  • Chang T.: ‘Radial breathing mode frequency of single-walled carbon nanotubes under strain’, Appl. Phys. Lett., 2008, 93, 061901.
  • Nikolic B., Milosevic I. and Damnjanovic M.: ‘Raman intensities of totally symmetrical modes of homogeneously deformed single-walled carbon nanotubes’, J. Phys. Chem. C, 2014, 118, 20576–20584.
  • Rafii-Tabar H.: ‘Computational modelling of thermo-mechanical and transport properties of carbon nanotubes’, Phys. Rep., 2004, 390, 235–452.
  • Zhao X., Ando Y., Qin L. C., Kataura H., Maniwa Y. and Saito R.: ‘Radial breathing modes of multiwalled carbon nanotubes’, Chem. Phys. Lett., 2002, 361, 169–174.
  • Li F., Chou S. G., Ren W., Gardecki J. A., Swan A. K., Ünlü M. S., Goldberg B. B., Cheng H. M. and Dresselhaus M. S.: ‘Identification of the constituents of double-walled carbon nanotubes using Raman spectra taken with different laser-excitation energies’, J. Mater. Res., 2003, 18, 1251–1258.
  • Pfeiffer R., Simon F., Kuzmany H., Popov V. N., Zólyomi V. and Kürti J.: ‘Tube-tube interaction in double-wall carbon nanotubes’, Phys. Status Solidi B, 2006, 243, 3268–3272.
  • Spudat C., Müller M., Houben L., Maultzsch J., Goss K., Thomsen C., Schneider C. M. and Meyer C.: ‘Observation of breathing-like modes in an individual multiwalled carbon nanotube’, Nano Lett., 2010, 10, 4470–4474.
  • Levshov D., Than T. X., Arenal R., Popov V. N., Parret R., Paillet M., Jourdain V., Zahab A. A., Michel T., Yuzyuk Y. I. and Sauvajol J. L.: ‘Experimental evidence of a mechanical coupling between layers in an individual double-walled carbon nanotube’, Nano Lett., 2011, 11, 4800–4804.
  • Liu K., Hong X., Wu M., Xiao F., Wang W., Bai X., Ager J. W., Aloni S., Zettl A., Wang E. and Wang F.: ‘Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes’, Nat. Commun., 2013, 4, 1375.
  • Ch Hirschmann T., Araujo P. T., Muramatsu H., Zhang X., Nielsch K., Kim Y. A. and Dresselhaus M. S.: ‘Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy’, ACS Nano, 2013, 7, 2381–2387.
  • Gupta R., Singh B. P., Singh V. N., Gupta T. K. and Mathur R. B.: ‘Origin of radial breathing mode in multiwall carbon nanotubes synthesized by catalytic chemical vapor deposition’, Carbon, 2014, 66, 724–726.
  • Popov V. N. and Henrard L.: ‘Breathinglike phonon modes of multiwalled carbon nanotubes’, Phys. Rev. B, 2002, 65, 235415.
  • Dobardžić E., Maultzsch J., Milošević I., Thomsen C. and Damnjanović M.: ‘The radial breathing mode frequencyin double-walled carbon nanotubes: an analytical approximation’, Phys. Status Solidi B, 2003, 237, R7–R10.
  • Wu G., Zhou J. and Dong J.: ‘Radial-breathing-like phonon modes of double-walled carbon nanotubes’, Phys. Rev. B, 2005, 72, 115418.
  • Wu G. and Dong J.: ‘Anomalous heat conduction in a carbon nanowire: molecular dynamics calculations’, Phys. Rev. B, 2005, 71, 115410.
  • Xu C. L. and Wang X.: ‘Matrix effects on the breathing modes of multiwall carbon nanotubes’, Compos. Struct., 2007, 80, 73–81.
  • Han S. and Goddard W. A.: ‘Coupling of Raman radial breathing modes in double-wall carbon nanotubes and bundles of nanotubes’, J. Phys. Chem. B, 2009, 113, 7199–7204.
  • Ghavanloo E. and Fazelzadeh S. A.: ‘Prediction of radial breathing-like modes of double-walled carbon nanotubes with arbitrary chirality’, Phys. B, 2014, 451, 34–38.
  • Lei X. W., Natsuki T., Shi J. X. and Ni Q. Q.: ‘Radial breathing vibration of double-walled carbon nanotubes subjected to pressure’, Phys. Lett. A, 2011, 375, 2416–2421.
  • Miao C. Y., Li H. J. and Guo W. L.: ‘Radial breathing modes of multi-walled carbon nanotubes by anatomic beam-spring model’, Sci. China Phys. Mech. Astron., 2012, 55, 940–946.
  • Sbai K., Rahmani A., Fakrach B., Chadli H. and Benhamou M.: ‘Modeling and simulation of vibrational breathing-like modes in individual multiwalled carbon nanotubes’, Phys. E, 2014, 56, 312–318.
  • Yoshida M. and Fowler P. W.: ‘Dihedral fullerenes of threefold symmetry with and without face spirals’, J. Chem. Soc. Faraday Trans., 1997, 93, 3289–3294.
  • Adhikari S. and Chowdhury R.: ‘Vibration spectra of fullerene family’, Phys. Lett. A, 2011, 375, 2166–2170.
  • Jishi R. A., Mirie R. M. and Dresselhaus M. S.: ‘Force-constant model for the vibrational modes in C60’, Phys. Rev. B, 1992, 45, 13685–13689.
  • Chadderton L.: ‘Axisymmetric vibrational modes of fullerene C60’, J. Phys. Chem. Solids, 1993, 54, 1027–1033.
  • Kahn D., Kim K. and Stroscio M.: ‘Quantized vibrational modes of nanospheres and nanotubes in the elastic continuum model’, J. Appl. Phys., 2001, 89, 5107–5111.
  • Ghavanloo E. and Fazelzadeh S. A.: ‘Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures’, Mech. Adv. Mater. Struct., 2015, 22, 597–603.
  • Zhou J. and Dong J.: ‘Vibrational property and Raman spectrum of carbon nanoribbon’, Appl. Phys. Lett., 2007, 91, 173108.
  • Zhou J. and Dong J.: ‘Radial breathing-like mode of wide carbon nanoribbon’, Phys. Lett. A, 2008, 372, 7183–7186.
  • Sanders G. D., Nugraha A. R. T., Saito R. and Stanton C. J.: ‘Coherent radial-breathing-like phonons in graphene nanoribbons’, Phys. Rev. B, 2012, 85, 205401.
  • Xia M., Su Z., Song Y., Han J., Zhang S. and Li B.: ‘Localized vibrational, edges and breathing modes of graphene nanoribbons with topological line defects’, Eur. Phys. J.B, 2013, 86, 344.
  • Jiang J. W., Wang B. S. and Rabczuk T.: ‘Acoustic and breathing phonon modes in bilayer graphene with Moiré patterns’, Appl. Phys. Lett., 2012, 101, 023113.
  • Lui C. H., Malard L. M., Kim S., Lantz G., Laverge F. E., Saito R. and Heinz T. F.: ‘Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering’, Nano Lett., 2012, 12, 5539–5544.
  • Lui C. H. and Heinz T. F.: ‘Measurement of layer breathing mode vibrations in few-layer graphene’, Phys. Rev. B, 2013, 87, 121404(R).
  • Ng M. Y. and Chang Y. C.: ‘Laser-induced breathing modes in metallic nanoparticles: a symmetric molecular dynamics study’, J. Chem. Phys., 2011, 134, 094116.
  • Gupta S. K., Sahoo S., Jha P. K., Arora A. K. and Azhniuk Y. M.: ‘Observation of torsional mode in CdS1-xSex nanoparticles in a borosilicate glass’, J. Appl. Phys., 2009, 106, 024307.
  • Zhang X., Han W. P., Wu J. B., Milana S., Lu Y., Li Q. Q., Ferrari A. C. and Tan P. H.: ‘Raman spectroscopy of shear and layer breathing modes in multilayer MoS2’, Phys. Rev. B, 2013, 87, 115413.
  • Montagna M.: ‘Brillouin and Raman scattering from the acoustic vibrations of spherical particles with a size comparable to the wavelength of the light’, Phys. Rev. B, 2008, 77, 045418.
  • Voisin C., Del Fatti N., Christofilos D. and Vallée F.: ‘Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles’, J. Phys. Chem. B, 2001, 105, 2264–2280.
  • Voisin C., Christofilo D., Del Fatti N. and Vallée F.: ‘Environment effect on the acoustic vibration of metal nanoparticles’, Phys. B, 2002, 31, (6–317), 89–94.
  • Dubrovskiy V. A. and Morochnik V. S.: ‘Natural vibrations of a spherical inhomogeneity in an elastic medium’, Earth Phys., 1981, 17, 494–504.
  • Nelet A., Crut A., Arbouet A., Del Fatti N., Vallée F., Portalès H., Saviot L. and Duval E.: ‘Acoustic vibrations of metal nanoparticles: high order radial mode detection’, Appl. Surf. Sci., 2004, 226, 209–215.
  • Cheng W., Ren S. F. and Yu P. Y.: ‘Microscopic theory of the low frequency Raman modes in germanium nanocrystals’, Phys. Rev. B, 2005, 71, 174305.
  • Lamb H.: ‘On the vibrations of a spherical shell’, Proc. Lond. Math. Soc., 1883, 14, 50–56.
  • Combe N., Huntzinger J. R. and Mlayah A.: ‘Vibrations of quantum dots and light scattering properties: atomistic versus continuous models’, Phys. Rev. B, 2007, 76, 205425.
  • Mongin D., Juvé V., Maioli P., Crut A., Del Fatti N., Vallée F., ánchez-Iglesias A. S., Pastoriza-Santos I. and Liz-Marzán L. M.: ‘Acoustic vibrations of metal-dielectric core-shell nanoparticles’, Nano Lett., 2011, 11, 3016–3021.
  • Sauceda H. E., Mongin D., Maioli P., Crut A., Pellarin M., Del Fatti N., Vallée F. and Garzón I. L.: ‘Vibrational properties of metal nanoparticles: atomistic simulation and comparison with time-resolved investigation’, J. Phys. Chem. C, 2012, 116, 25147–25156.
  • Huang G. Y. and Liu J. P.: ‘Effect of surface stress and surface mass on elastic vibrations of nanoparticles’, Acta Mech., 2013, 224, 985–994.
  • Sastry M., Swami A., Mandal S. and Selvakannan P. R.: ‘New approaches to the synthesis of anisotropic, core-shell and hollow metal nanostructures’, J. Mater. Chem., 2005, 15, 3161–3174.
  • Portalès H., Goubet N., Saviot L., Adichtchev S., Murray D. B., Mermet A., Duval E. and Piléni M. P.: ‘Probing atomic ordering and multiple twinning in metal nanocrystals through their vibrations’, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 14784–14789.
  • Saviot L. and Murray D. B.: ‘Acoustic vibrations of anisotropic nanoparticles’, Phys. Rev. B, 2009, 79, 214101.
  • Saviot L., Murray D. B., Duval E., Mermet A., Sirotkin S. and Marco de Lucas M. C.: ‘Simple model for the vibrations of embedded elastically cubic nanocrystals’, Phys. Rev. B, 2010, 82, 115450.
  • Ghavanloo E. and Fazelzadeh S. A.: ‘Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics’, Nanotechnology, 2013, 24, 075702.
  • Fazelzadeh S. A. and Ghavanloo E.: ‘Radial vibration characteristics of spherical nanoparticles immersed in fluid medium’, Mod. Phys. Lett. B, 2013, 27, 1350186.
  • Ghavanloo E., Fazelzadeh S. A., Murmu T. and Adhikari S.: ‘Radial breathing-mode frequency of elastically confined spherical nanoparticles subjected to circumferential magnetic field’, Phys. E, 2015, 66, 228–233.
  • Dresselhaus M. S., Lin Y. M., Rabin O., Jorio A., Souza Filho A. G., Pimenta M. A. and Saito R.: ‘Nanowires and nanotubes’, Mater. Sci. Eng. C, 2003, 23, 129–140.
  • Utama M. I. B., Zhang J., Chen R., Xu X., Li D., Sun H. and Xiong Q.: ‘Synthesis and optical properties of II-VI 1D nanostructures’, Nanoscale, 2012, 4, 1422–1435.
  • Hu M., Wang X., Hartland G. V., Mulvaney P., Juste J. P. and Sader J. E.: ‘Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis’, J. Am. Chem. Soc., 2003, 125, 14925–14933.
  • Pokatilov E. P., Nika D. L. and Balandin A. A.: ‘Acoustic phonon engineering in coated cylindrical nanowires’, Superlattices Microstruct., 2005, 38, 168–183.
  • Staleva H. and Hartland G. V.: ‘Vibrational dynamics of silver nanocubes and nanowires studied by single-particle transient absorption spectroscopy’, Adv. Funct. Mater., 2008, 18, 3809–3817.
  • Bourgeois E., Fernández-Serra M. V. and Blasé X.: ‘Radial breathing mode in silicon nanowires: an ab initio study’, Phys. Rev. B, 2010, 81, 193410.
  • Mitran T. L., Nicolaev A., Nemnes G. A., Ion L. and Antohe S.: ‘Ab initio vibrational and thermal properties of AlN nanowires under axial stress’, Comput. Mater. Sci., 2011, 50, 2955–2959.
  • Trejo A., Vazquez-Medina R., Duchen G. I. and Cruz-Irisson M.: ‘Anisotropic effects on the radial breathing mode of silicon nanowires: an ab initio study’, Phys. E, 2013, 51, 10–14.
  • Martínez-Gutiérrez D. and Velasco V. R.: ‘Acoustic breathing mode frequencies in cylinders, cylindrical shells and composite cylinders of general anisotropic crystals: application to nanowires’, Phys. E, 2013, 54, 86–92.
  • Huang G. Y. and Kang Y. L.: ‘Acoustic vibrations of a circular nanowire by considering the effect of surface’, J. Appl. Phys., 2011, 110, 023526.
  • Ghavanloo E., Fazelzadeh S. A. and Rafii-Tabar H.: ‘Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects’, Phys. B, 2014, 440, 43–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.