601
Views
142
CrossRef citations to date
0
Altmetric
Articles

Global patterns of Sphagnum productivity

Pages 269-279 | Published online: 18 Jul 2013

References

  • Aerts R, Verhoeven JTA, Whigham DF. 1999. Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80: 2170–2181.
  • Aerts R, Wallén B, Malmer N. 1992. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology 80: 131–140.
  • Aerts R, Wallén B, Malmer N, de Caluwe H. 2001. Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. Journal of Ecology 89: 292–299.
  • Aldous AR. 2002. Nitrogen retention by Sphagnum mosses: responses to atmospheric nitrogen deposition and drought. Canadian Journal of Botany 80: 721–731.
  • Andrews AL. 1913. Sphagnales. North American Flora, Vol. 15. New York: New York Botanical Garden, 3–31.
  • Andrus RE. 1986. Some aspects of Sphagnum ecology. Canadian Journal of Botany 64: 416–426.
  • Asada T, Warner BG, Banner A. 2003. Growth of mosses in relation to climate factors in a hypermaritime coastal peatland in British Columbia, Canada. Bryologist 106: 516–527.
  • Backéus I. 1985. Above ground production and growth dynamics of vascular bog plants in Central Sweden. Acta Phytogeographica Suecica 74: 1–98.
  • Bartsch I, Moore TR. 1984. A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Québec. Canadian Journal of Botany 63: 1241–1248.
  • Bellamy DJ, Riely J. 1967. Some ecological statistics of a “miniature bog”. Oikos 18: 33–40.
  • Belyea LR. 1996. Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 66: 269–278.
  • Belyea LR, Clymo RS. 2001. Feedback control of the rate of peat formation. Proceedings of the Royal Society of London, Series B 268: 1315–1321.
  • Berendse F, van Breemen N, Rydin H, Buttler A, Heijmans MPD, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Waal B. 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology 7: 591–598.
  • Bien WF. 1999. Ecological factors influencing spatial patterns in Sphagnum flavicomans and Sphagnum pulchrum from the New Jersey Pine Barrens. PhD thesis, Drexel University, Philadelphia.
  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hijek M, Grosvernier P, Hijek T, Hajkova P, Hansen I, Iacumin P, Gerdol R. 2004. Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist 163: 609–616.
  • Brock TCM, Bregman R. 1989. Periodicity in growth, productivity, nutrient content and decomposition of Sphagnum recurvum var. mucronatum in a fen woodland. Oecologia 80: 44–52.
  • Camill P, Lynch JA, Clark JS, Adams JB, Jordan B. 2001. Changes in biomass, aboveground net primary production, and peat accumu-lation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4: 461–478.
  • Campbell C, Vitt DH, Halsey LA, Campbell ID, Thormann MN, Bayley SE. 2000. Net primary production and standing biomass in northern continental wetlands. NOR-X-369. Edmonton, Alberta: Nature Resources Canada, Canadian Forest Service, Northern Forestry Centre, 1–57.
  • Chapin CT, Bridgham SD, Pastor J. 2004. pH and nutrient effects on above-ground net primary production in a Minnesota, USA bog and fen. Wetlands 24: 186–201.
  • Chapman SB. 1965. The ecology of Comm Rigg Moss, Northumberland. III. Some water relations of the bog system. Journal of Ecology 53: 371–384.
  • Charman D. 2002. Peatlands and environmental change. Chichester: John Wiley & Sons.
  • Clymo RS. 1970. The growth of Sphagnum: methods of measurement. Journal of Ecology 58: 13–49.
  • Clymo RS. 1984. Sphagnum-dominated peat bog: a naturally acid ecosystem. Philosophical Transactions of the Royal Society of London, Series B 305: 487–499.
  • Clymo RS, Hayward PM. 1982. The ecology of Sphagnum. In: Smith AJE, ed. Bryophyte ecology. London: Chapman and Hall, 229–289.
  • Clymo RS, Reddaway EJF. 1971a. A tentative dry matter balance sheet for the wet blanket bog on Burnt Hill Moor House NNR. Moor House Occasional Papers 3: 1–15.
  • Clymo RS, Reddaway EJF. 1971b. Productivity of Sphagnum (bog-mosses) and peat accumulation. Hydrobiologia 12: 181–192.
  • Conover WJ. 1980. Practical nonparametric statistics, 2nd edn. New York: John Wiley & Sons.
  • Coulson JC, Butterfield J. 1978. An investigation of the biotic factors determining the rates of plant decomposition on blanket bogs. Journal of Ecology 66: 631–650.
  • Cronberg N. 1998. Population structure and interspecific differentiation of the peat moss sister species Sphagnum rubellum and S. capillifolium (Sphagnaceae) in northern Europe. Plant Systematics and Evolution 209: 139–158.
  • Crum HA. 1984. Sphagnopsida Sphagnaceae. North American Flora, Series 2, Part 11. New York: New York Botanical Garden.
  • Damman AWN. 1978. Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30: 480–495.
  • Damman AWN. 1979. Geographic patterns in peatland development in eastern North America. Proceedings of the International Symposium of Classification of Peat and Peatlands. Hyytiald: International Peat Society.
  • Daniels RE, Eddy A. 1990. Handbook of European Sphagna, 2nd edn. London: HMSO.
  • Dorrepaal E, Aerts R, Corneliussen HC, Callaghan TV, van Logtestjin RSP. 2003. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology 10: 93–104.
  • Field CB, Behrenfeld MJ, Randerson JT, Falkowsld P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.
  • Flatberg KI. 1992. The European taxa in the Sphagnum recurvum complex. 1. Sphagnum isoviitae sp. nov. Journal of Bryology 17: 1–13.
  • Forrest GI, Smith RAH. 1975. The productivity of a range of blanket bog vegetation types in the northern Pennines. Journal of Ecology 63: 173–202.
  • Franzén LG. 1994. Are wetlands the key to the ice-age cycle enigma? Ambio 23: 300–308.
  • Gerdol R. 1995. The growth dynamics of Sphagnum based on field measurements in a temperate bog and on laboratory cultures. Journal of Ecology 83: 431–437.
  • Gignac LD. 1993. Distribution of Sphagnum-species, communities, and habitats in relation to climate. Advances in Bryology 5: 187–222.
  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182–195.
  • Grabovik SI. 2003. Dynamics of productivity of Sphagnum mosses coenopopulations. Botanical Journal 88: 41–48.
  • Grigal DF. 1984. Sphagnum production in forested bogs of northern Minnesota. Canadian Journal of Botany 63: 1204–1207.
  • Gunnarsson U, Granberg G, Nilsson M. 2004. Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytologist 163: 349–359.
  • Gunnarsson U, Rydin H. 2000. Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytologist 147: 527–537.
  • Gunnarsson U, Rydin H, Wks H. 2000. Diversity and pH changes after 50 years on the boreal mire Skattlösbergs Stormosse, Central Sweden. Journal of Vegetation Science 11: 277–286.
  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brian EM, Porter EE, Turner JRG. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105–3117.
  • Hayward PM, Clymo RS. 1983. The growth of Sphagnum: experiments on, and simulation of, some effects of light flux and water-table depth. Journal of Ecology 71: 845–863.
  • Hedenis L, Kooijman AM. 1996. Phylogeny and habitat adaptations within a monophyletic group of wetland moss genera (Amblystegiaceae). Plant Systematics and Evolution 199: 33–52.
  • Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Kkes H, de Visser W, van Breemen N. 2001. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. Journal of Ecology 89: 268–279.
  • Hill MO. 1978. Sphagnopsida. In: Smith AJE, ed. The moss flora of Britain and Ireland. Cambridge: Cambridge University Press, 30–78.
  • Johnson LC, Damman AWN. 1991. Species-controlled Sphagnum decay on a South Swedish raised bog. Oikos 61: 234–242.
  • Johnson LC, Damman AWN. 1993. Decay and its regulation in Sphagnum peatlands. Advances in Bryology 5: 249–296.
  • Kashimura T. 1982. Production and decomposition of Sphagnum mats in Shimotashiro-Ukishim area of Ozegahara Moor. Conservation and Regeneration of Ozegahara Moor 13: 41–49.
  • Kashimura T, Kantani J. 1987. Structure and development of the surface layer of a bog in Akaiyachi Moor. Report of the Nature of Lake Inawashiro. Fukushima, Japan: Fukushima University, 11–16.
  • Kooijman AM, Bakker C. 1995. Species replacement in the bryophyte layer in mires: the role of water type, nutrient supply and interspecific interactions. Journal of Ecology 83: 1–8.
  • Lappalainen E. 1996. General review on world peatland and peat resources. In: Lappalainen E, ed. Global peat resources. Finland: International Peat Society, 53–56.
  • Leemans R, Cramer W. 1991. The HASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid Laxemburg, Austria: International Institute for Applied Systems Analysis (IIASA), RR-91-18,1-62.
  • Li Y, Vitt DH. 1997. Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. tcoscience 4: 106–116.
  • Limpens J, Berendse F. 2003. How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103: 537–547.
  • Limpens J, Tomassen HBM, Berendse F. 2003. Expansion of Sphagnum fallax in bogs: striking the balance between N and P availability. Journal of Bryology 25: 83–90.
  • Lindholm T. 1990. Growth dynamics of the peat moss Sphagnum fuscum on hummocks on a raised bog in southern Finland. Annales Botanici Fennici 27: 67–78.
  • Lindholm T, Vasander H. 1990. Production of eight species of Sphagnum at Suurisuo mire, southern Finland. Annales Botanici Fennici 27: 145–157.
  • Longton RE. 1970. Growth and productivity in the moss Polytrichum alpestre Hoppe in Antarctic regions. In: Holdgate MW, ed. Antarctic ecology, Vol. 2. London: Academic Press, 818–837.
  • Luken JO, Billings WD. 1983. Changes in bryophyte production associated with a thermokarst erosion cycle in a subarctic bog. Lindbergia 9: 163–168.
  • Liitke Twenhöven F. 1992. Untersuchungen zur Wirkung stickstoffhal-tige Niederschläge auf die Vegetation von Hochmooren. Mitteilungen der Arbeitsgemeinschft Geobotanik in Schleswig-Holstein und Hamburg 44: 1–172.
  • Liitt S. 1992. Productionsbiologische Untersuchungen zur Sukzession der Torfstichvegetation in Schleswig-Holstein. Mitteilungen der Arbeitsgemeinschft Geobotanik in Schleswig-Holstein und Hamburg 43: 1–250.
  • Malmer N, Wallén B. 1993. Accumulation and release of organic matter in ombrotrophic bog hummocks - processes and regional variation. Ecography 16: 193–211.
  • Malmer N, Waal B. 2004. Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. Holocene 14: 111–117.
  • McNeil P, Waddington JM. 2003. Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. Journal of Applied Ecology 40: 354–367.
  • Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Siegenthaler A, Gobat J-M. 2002. Contrasting effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. Journal of Ecology 90: 529–533.
  • Moore TR. 1989. Growth and net production of Sphagnum at five fen sites, subarctic eastern Canada. Canadian Journal of Botany 67: 1203–1207.
  • Moore TR, Bubier JL, Frolldng SE, Lafleur PM, Roulet NT. 2002. Plant biomass and production and CO2 exchange in an ombro-trophic bog. Journal of Ecology 90: 25–36.
  • Murray KJ, Tenhunen JD, Kummerow J. 1989. Limitations on Sphagnum growth and net primary production in the foothills of the Philip Smith Mountains, Alaska. Oecologia 80: 256–262.
  • Murray KJ, Tenhunen JD, Nowak RS. 1993. Photoinhibition as a control on photosynthesis and production of Sphagnum mosses. Oecologia 96: 200–207.
  • Overbeck F. Happach H. 1957. Ober das Wachtum und den Wasserhaushalt einiger Hochmoorsphagnen. Flora 144: 335–402.
  • Pakarainen P. 1978. Production and nutrient ecology of three Sphagnum species in southern Finnish raised bogs. Annales Botanici Fennici 15: 15–26.
  • Pakarainen P, Gorham E. 1983. Mineral element composition of Sphagnum fuscum peats collected from Minnesota, Manitoba, and Ontario. In: Proceedings of the international symposium on peat utilization. Bemidji, Minnesota: Bemidji State University, 417–429.
  • Pedersen A. 1975. Growth measurements of five Sphagnum species in South Norway. Norwegian Journal of Botany 22: 277–284.
  • Reader RJ, Stewart JM. 1971. Net primary production of bog vegetation in southeastern Manitoba. Canadian Journal of Botany 49: 1471–1477.
  • Robson TM, Pancotto VA, Flint SD, &Hark CL, Sala OE, Scopel AL, Caldwell MM. 2003. Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in Tierra del Fuego peatlands. New Phytologist 160: 379–389.
  • Rochefort L, Vitt DH, Bayley SE. 1990. Growth, production, and decomposition dynamics of Sphagnum under natural and experi-mentally acidified conditions. Ecology 71: 1986–2000.
  • Rosswall T, Flower-Ellis JGK, Johansson LG, Jonasson S, Ryden BE, Soneson M. 1975. Stordalen (Abisko), Sweden. Ecological Bulletin 20: 265–294.
  • Russell S. 1988. Measurement of bryophyte growth. 1. Biomass (harvest) techniques. In: Glime JM, ed. Methods in bryology. Proceedings from the Bryological Methods Workshop, Mainz. Nichinan, Japan: Hattori Botanical Laboratory, 249–257.
  • Rydin H. 1985. Effects of water level on desiccation of Sphagnum in relation to surrounding Sphagna. Oikos 45: 374–379.
  • Rydin H. 1993. Mechanisms of interactions among Sphagnum species along water-level gradients. Advances in Bryology 5: 153–185.
  • SAS Institute. 2004. SASISTAT® 9.1 User's Guide. Cary, NC: SAS Institute Inc.
  • Shaw AJ. 2000. Phylogeny of the Sphagnopsida based on chloroplast and nuclear DNA sequences. Bryologist 103: 277–306.
  • Shiraishi A, Ino Y, Kume A, Mochida Y. 1996. Growth and production of Sphagnum mosses from Takadayachi Moor in Acoda moun-tains, Northeast Japan. 2. Growth in length measured with a point level method. Ecological Review 23: 189–199.
  • Silvola J, Hanski I. 1979. Carbon accumulation in a raised bog. Oecologia 37: 285–295.
  • Sjörs H. 1948. Myrvegetation i Bergslagen. Acta Phytogeographica Suecica 48: 1–299.
  • Sjörs H, Gunnarsson U. 2002. Calcium estimations and pH in northern and central Swedish mire waters. Journal of Ecology 90: 650–657.
  • Stokes JR, Alspach PA, Stanley CJ. 1999. Effect of water table on growth of three New Zealand Sphagnum species: implications for S. cristatum management. Journal of Bryology 21: 25–29.
  • Szumigalsld AR. 1995. Net aboveground primary production along a peatland gradient in central Alberta. M.Sc. thesis, University of Alberta.
  • Tachibana H, Sasahara K, Tsugihara S. 1987. A preliminary report of the production of Sphagna in the central part of Furen Mire, eastern Hokkaido. Nagano-ken Shokubutsu Kenkyuu-kai Shi 20: 31–35.
  • Thompson MV, Randerson JT, Malmstrom CM, Field CB. 1996. Change in net primary production and heterotrophic respiration: how much is necessary to sustain the terrestrial carbon sink? Global Biogeochemical Cycles 10: 711–726
  • Thormann MN, Bayley SE. 1997. Above ground net primary production along a bog-fen-marsh gradient in southern boreal Alberta, Canada. Ecosience 4: 374–384.
  • Thormann MN, Bayley SE, Currah RS. 2001. Comparison of decomposition of belowground and aboveground plant litters in peatlands of boreal Alberta, Canada. Canadian Journal of Botany 79: 9–22.
  • Thormann MN, Szumigalsld AR, Bayley SE. 1999. Aboveground peat and carbon accumulation potentials along a bog-fen-marsh gradient in southern boreal Alberta, Canada. Wetlands 19: 305–317.
  • Tuhkanen S. 1984. A circumboreal system of climatic phylographical regions. Acta Botanica Fennica 127: 1–50.
  • Vitt DH. 1990. Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Botanical Journal of the Linnean Society 104: 35–59.
  • Vitt DH. 2000. Peatlands: ecosystems dominated by bryophytes. In: Shaw AJ, Goffinet B, eds. Bryophyte biology. Cambridge: Cambridge University Press, 312–343.
  • Vitt DH, Halsey LA, Campbell C, Bayley SE, Thormann MN. 2001. Spatial patterning of net primary production in wetlands of continental western Canada. Ecoscience 8: 499–505.
  • Vitt DH, Wieder K, Halsey LA, Turetsky M. 2003. Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. Bryologist 106: 235–245.
  • Waal B, Falkengren-Grerup U, Malmer N. 1988. Biomass, productiv-ity and relative rate of photosynthesis of Sphagnum at different water levels on a South Swedish peat bog. Holarctic Ecology 11: 70–76.
  • Weltzin JF, Harth C, Bridgham, SD, Pastor J, Vonderharr M. 2001. Production and microtopography of bog bryophytes: response to warming and water-table manipulations. Oecologia 128: 557–565.
  • Weltzin J, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT. 2000. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81: 3464–3478.
  • Wieder RK, Lang GE. 1983. Net primary production of the dominant bryophytes in a Sphagnum-dominated wetland in West Virginia. Bryologist 86: 280–286.
  • Willams BL, Silcock DJ. 1997. Nutrient and microbial changes in the peat profile beneath Sphagnum magellanicum in response to additions of ammonium nitrate. Journal of Applied Ecology 34: 961–970.
  • Wright DH, Currie DJ, Maurer BA. 1993. Energy supply and patterns of species richness on local and regional scales. In: Ricklef RE, Schuter D, eds. Species diversity in ecological communities. Chicago: The University of Chicago Press, 66–74.
  • Zar HI. 1998. Biostatistical analysis. Englewood cliffs, New Jersey: Pearson Education.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.