503
Views
10
CrossRef citations to date
0
Altmetric
Special Issue Articles

Multiaxial cyclic viscoplasticity model for high temperature fatigue of P91 steel

, , , &
Pages 67-74 | Received 01 May 2013, Accepted 24 Aug 2013, Published online: 06 Dec 2013

References

  • Barrett R.A., O’Donoghue P.E. and Leen S.B.: ‘An improved unified viscoplastic constitutive model for strain-rate sensitivity in high temperature fatigue’, Int. J. Fatigue, 2013, 48, 192–204.
  • Barrett R.A., O’Donoghue P.E. and Leen S.B.: ‘Finite element modelling of the thermo-mechanical behaviour of a 9Cr martensitic steel’, in ‘Advanced materials modelling for structures’ (ed. Altenbach H. and Kruch S.), 31–41; 2013, Berlin Heidelberg, Springer.
  • Swindeman R.W., Santella M.L., Maziasz P.J., Roberts B.W. and Coleman K.: ‘Issues in replacing Cr–Mo steels and stainless steels with 9Cr–1Mo–V steel’, Int. J. Press. Vessels Pip., 2004, 81, 507–512.
  • Chaboche J.L. and Rousselier G.: ‘On the plastic and viscoplastic constitutive equations – Part I: rules developed with internal variable concept’, J. Press. Vessel Technol., 1983, 105, 153–158.
  • Chaboche J.L. and Rousselier G.: ‘On the plastic and viscoplastic constitutive equations – Part II: application of internal variable concepts to the 316 stainless steel’, J. Press. Vessel Technol., 1983, 105, 159–164.
  • Koo G.H. and Kwon J.H.: ‘Identification of inelastic material parameters for modified 9Cr–1Mo steel applicable to the plastic and viscoplastic constitutive equations’, Int. J. Press. Vessels Pip., 2011, 88, 26–33.
  • Saad A.A., Hyde C.J., Sun W. and Hyde T.H.: ‘Thermal-mechanical fatigue simulation of a P91 steel in a temperature range of 400–600°C’, Mater. High Temp., 2011, 28, 212–218.
  • Farragher T.P., Scully S., O’Dowd N.P. and Leen S.B.: ‘Development of life assessment procedures for power plant headers operated under flexible loading scenarios’, Int. J. Fatigue, 2013, 49, 50–61.
  • Farragher T.P., Scully S., O’Dowd N.P. and Leen S.B.: ‘Thermomechanical analysis of a pressurized pipe under plant conditions’, J. Press. Vessel Technol., 2013, 135, 011204–011209.
  • Vakili-Tahami F., Hayhurst D.R. and Wong M.T.: High-temperature creep rupture of low alloy ferritic steel butt-welded pipes subjected to combined internal pressure and end loadings, philosophical transactions: mathematical’, Phys. Eng. Sci., 2005, 363, 2629–2661.
  • Esposito L. and Bonora N.: ‘A primary creep model for Class M materials’, Mater. Sci. Eng. A, 2011, A528, 5496–5501.
  • Zhang T., McHugh P.E. and Leen S.B.: ‘Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue’, Int. J. Fatigue, 2012, 44, 260–272.
  • Kupkovits R.A. and Neu R.W.: ‘Thermomechanical fatigue of a directionally-solidified Ni-base superalloy: smooth and cylindrically-notched specimens’, Int. J. Fatigue, 2010, 32, 1330–1342.
  • Flavenot J.F. and Skalli N.: ‘A critical depth criterion for the evaluation of long life fatigue strength under multiaxial loading and a stress gradient’, in ‘Biaxial and multiaxial fatigue’ (ed. Brown M. W. and Miller K. J.); 1989, London, Mechanical Engineering Publications.
  • Stephens R.I., Fatemi A., Stephens R.R. and Fuchs H.O.: ‘Metal fatigue in engineering’; 2001, New York, Wiley.
  • Chaboche J.L., Kanouté P. and Azzouz F.: ‘Cyclic inelastic constitutive equations and their impact on the fatigue life predictions’, Int. J. Plast., 2012, 35, 44–66.
  • Zhang Z., Delagnes D. and Bernhart G.: ‘Anisothermal cyclic plasticity modelling of martensitic steels’, Int. J. Fatigue, 2002, 24, 635–648.
  • Chaboche J.L.: ‘A review of some plasticity and viscoplasticity constitutive theories’, Int. J. Plast., 2008, 24, 1642–1693.
  • Barrett R.A., O’Donoghue P.E. and Leen S.B.: ‘A unified viscoplastic model for high temperature low cycle fatigue of service-aged P91 steel’, Trans. ASME J. Press. Vessel Technol., 2013, to be published.
  • Kloc L., Sklenicka V., Dlouhy A. and Kucharova K.: in ‘Microstructural stability of creep resistant alloys for high temperature plant applications’ (ed. Strang A., Cawley J. and Greenwood G. W.), 445–455; 1998, London, The Institute of Materials.
  • Sklenička V., Kuchařová K., Svoboda M., Kloc L., Buršík J. and Kroupa A.: ‘Long-term creep behavior of 9–12%Cr power plant steels’, Mater. Charact., 2003, 51, 35–48.
  • Nabarro F.: ‘Creep at very low rates’, Metall. Mater. Trans. A, 2002, A33, 213–218.
  • Zhao L., Jing H., Xu L., An J. and Xiao G.: ‘Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint’, Mater. Des., 2012, 34, 566–575.
  • Fournier B., Sauzay M., Barcelo F., Rauch E., Renault A., Cozzika T., Dupuy L. and Pineau A.: ‘Creep-fatigue interactions in a 9 Pct Cr–1 Pct Mo martensitic steel – Part II: microstructural evolutions’, Metall. Mater. Trans. A, 2009, A40, 330–341.
  • Saad A.A., Sun W., Hyde T.H. and Tanner D.W.J.: ‘Cyclic softening behaviour of a P91 steel under low cycle fatigue at high temperature’, Procedia Eng., 2011, 10, 1103–1108.
  • Saad A.A.: ‘Cyclic plasticity and creep of power plant materials’, PhD thesis, University of Nottingham, UK, 2012.
  • Zhang T., McHugh P.E. and Leen S.B.: ‘Computational study on the effect of contact geometry on fretting behaviour’, Wear, 2011, 271, 1462–1480.
  • Mohd Tobi A.L., Ding J., Bandak G., Leen S.B. and Shipway P.H.: ‘A study on the interaction between fretting wear and cyclic plasticity for Ti–6Al–4V’, Wear, 2009, 267, 270–282.
  • Klueh R.L. and Vitek J.M.: ‘Fluence and helium effects on the tensile properties of ferritic steels at low temperatures’, J. Nucl. Mater., 1989, 161, 13–23.
  • Yaguchi M. and Takahashi Y.: ‘Ratchetting of viscoplastic material with cyclic softening – Part 2: application of constitutive models’, Int. J. Plast., 2005, 21, 835–860.
  • Yaguchi M. and Takahashi Y.: ‘Ratchetting of viscoplastic material with cyclic softening, part 1: experiments on modified 9Cr–1Mo steel’, Int. J. Plast., 2005, 21, 43–65.
  • Dunne F.P.E. and Petrinic N.: ‘Introduction to computational plasticity’; 2007, Oxford, Oxford University Press.
  • ‘Boiler and pressure vessel code’, Section II, Part D, ASME, NY, USA, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.