516
Views
9
CrossRef citations to date
0
Altmetric
Review

3D creep cavitation characteristics and residual life assessment in high temperature steels: a critical review

, , &
Pages 603-626 | Received 03 Apr 2014, Accepted 08 Oct 2014, Published online: 22 Oct 2014

References

  • Evans RW and Wilshire B: ‘Creep of metals and alloys’; 1985, London, The Institute of Metals.
  • Vishwanathan R: ‘Damage mechanisms and life assessment of high temperature components’; 1989, Materials Park, OH, ASM International.
  • Klueh RL and Harries DR: ‘High chromium ferritic and martensitic steels for nuclear applications’; 2001, Philadelphia, PA, ASTM.
  • Abe F: ‘Bainitic and martensitic creep resistant steels’, Curr. Opin. Solid State Mater. Sci., 2004, 8, 305–339.
  • Taneike M, Abe F and Sawada K: ‘Creep strengthening of steels at high temperatures using nano-sized carbo-nitride dispersions’, Nature, 2003, 424, 294–296.
  • Abe F, Nakazawa S, Araki H and Noda T: ‘The role of microstructural instability on creep behavior of low radio-activation martensitic 9Cr-2W steel’, Metall. Trans. A, 1992, 23A, 469–477.
  • Vodarek V and Strang A: ‘Compositional changes in minor phases present in 12CrMoVNb steels during thermal exposure at 550°C and 600°C’, Mater. Sci. Technol. 2000, 16, 1207–1213.
  • Eggeler G: ‘The effect of long term creep on particle coarsening in tempered martensitic ferritic steels’ Acta Metall. 1989, 37, 3225–3234.
  • Kassner ME and Hayes TA: ‘Creep cavitation in metals’, Int. J. Plast., 2003, 19, 1715–1748.
  • Mayer K.-H and Masuyama F: ‘The development of creep resistant steels’, in Creep resistant steels’, (ed. Abe F et al.), 15–77; 2008, Abington, Woodhead/Boca RatonFL, CRC Press.
  • Hald J: ‘Microstructure and long term creep properties of 9–12%Cr steels’, Int. J. Press. Vessels. Pip., 2008, 85, 30–37.
  • Francis J, Mazur A and Bhadesia HKDH: ‘Review of type IV cracking in ferritic power plant steels’, Mater. Sci. Technol., 2006, 22, 1387–1395.
  • Abe F: ‘Metallurgy for long term stabilisation of ferritic steels for thick section boiler components in USC power plant at 650°C’, Proc. 8th Liege Conf. on ‘Materials for advanced power engineering’, 965–980; 2006, Jülich, FZJ.
  • Horiuchi T, Igarshi M and Abe F: ‘Improved utilization of added B in 9 Cr heat resistant steels containing W’, ISIJ Int., 2002, 42, 567–571.
  • Igarshi M: ‘Alloy design philosophy of creep resistant steels’, in ‘Creep resistant steels’, (ed. Abe F et al.), 539–572; 2008, Abington, Woodhead/Boca RatonFL, CRC Press.
  • Lin J, Liu Y and Dean TA: ‘A review on damage mechanisms models and calibration methods under various deformation conditions’, Int. J. Damage Mech., 2005, 14, 299–319.
  • Vishwanathan R and Tilley R: ‘Creep damage – industry needs and future research and development’, in ‘Creep resistant steels’, (ed. Abe F et al.), 637–666; 2008, Abington, Woodhead/Boca RatonFL, CRC Press.
  • Neubauer B and Wedel V: ‘Rest life estimation of creeping component by means of replication’, in ‘Advances in life prediction’, (ed. Woodford P A and Whitehead R), 317–324; 1983, New York, ASME.
  • Messerscmidt U, Bartsch M, Dietzsch C, Agamenone R, Gupta C and Blum W: unpublished research.
  • Chilukuru H: ‘On the microstructural basis of creep strength and creep-fatigue interaction in 9–12% Cr steels for application in power plants’, PhD thesis, University of Erlangen–Nuremburg, Germany, 2007.
  • Blum W: ‘Mechanisms of creep deformation in steel’, in ‘Creep resistant steels’, (ed. Abe F et al.), 365–401; 2008, Abington, Woodhead/Boca RatonFL, CRC Press.
  • Stock SR: ‘Micro-computed tomography: methodology and applications’; 2009, Boca Raton, FL, CRC Press.
  • Stock SR: ‘Recent advances in X-ray micro-tomography applied to materials’, Int. Mater. Rev., 2008, 53, 129–181.
  • S. R. Stock: ‘X-ray microtomography of materials’, Int. Mater. Rev., 1999, 44, 141–164.
  • Baruchel J, Buffiere J.-Y, Maire E, Merle P and Piex G: ‘X-ray tomography in material science’; 2000, Paris, Hermes Science.
  • Maire E and Withers PJ: ‘Quantitative X-ray tomography’, Int. Mater. Rev., 2014, 59, 1–43.
  • Steuwer A, Edwards L, Pratihar S, Ganguly S, Peel M, Fitzpatrick ME, Marrow TJ, Withers PJ, Sinclair I, Singh KD, Gao N, Buslaps T and Buffiere J.-Y: ‘In situ analysis of cracks in structural materials using synchrotron X-ray tomography and diffraction’, Nucl. Instrum. Meth. Phys. Res. B, 2006, 246B, 217–225.
  • Dyson BF: ‘Creep and fracture of metals: mechanisms and mechanics’, Rev. Phys. Appl., 1988, 23, 605–613.
  • Gupta C, Toda H, Schlacher C, Adachi Y, Mayr P, Sommitsch C, Uesugi K, Suzuki Y, Takeuchi A and Kobayashi M: ‘A study of creep cavitation behaviour in tempered martensitic steel using synchrotron micro-tomography and serial sectioning techniques.’, Mater. Sci. Eng. A, 2103, A564, 525–538.
  • Connolly BJ, Horner DA, Fox SJ, Davenport AJ, Padovani C, Zhou S, Turnbull M. Preuss, N. P. Stevens, T. J. Marrow, J. �Y. Buffiere, E. Boller, A. Groso, M. Stampanoni A: ‘X-ray microtomography studies of localised corrosion and transitions to stress corrosion cracking’, Mater. Sci. Technol., 2006, 22, 1076–1085.
  • Gupta C, Toda H, Fujioka T, Kobayashi M, Uesugi K, Takeuchi A and Suzuki Y: ‘Micro-pore development phenomenon in hydrogen pre-charged aluminium alloy studied using synchrotron X-ray micro-tomography’, Appl. Phys. Lett., 2013, 103, 171902-1-4.
  • Buffiere J.-Y, Maire E, Cloetens P, Lormand G and Fougres R: ‘Characterisation of internal damage in a MMCP using X-ray synchrotron phase contrast microtomography’, Acta Mater., 1999, 47, 1613–1625.
  • Guvenilir A, Breunig TM, Kinney JH and Stock SR: ‘Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li 2090’, Acta Mater., 1997, 45, 1977–1987.
  • Guvelinir A and Stock SR: ‘High resolution computed tomography and its implications for fatigue crack closure modelling’, Fatigue Fract. Mater. Struct., 1998, 21, 439–450.
  • Guvelinir A, Bruning TM, Kinney JH and Stock SR: ‘New direct observations of crack closure processes in Al-Li 2090 T8E41’, Philos. Trans. R. Soc. (Lond.), 1999, 357, 2755–2775.
  • Toda H, Sinclair I, Buffiere J.-Y, Maire E, Connolly T, Joyce M, Khor KH and Gregson P: ‘Assessment of fatigue crack closure phenomenon in damage tolerant aluminum alloy by in-situ high resolution synchrotron X-ray micro-tomography’, Philos. Mag., 2003, 83, 2429–2448.
  • Nielsen SF, Beckmann F, Poulsen HF and Wert JA: ‘Measurements of components of plastic displacement gradients in three dimensions’, Mater. Sci. Eng. A, 2004, A387–A389, 336–338.
  • Nielsen SF, Poulsen HF, Beckmann F, Thorning C and Wert JA: ‘Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron microtomography’, Acta Mater., 2003, 51, 2407–2415.
  • Kobayashi M, Toda H, Kawai Y, Ohgaki T, Uesugi K, Wilkinson DS, Kobayashi T, Aoki Y and Nakazawa M: ‘High density three dimensional mapping of internal strains by tracking microstructural features’, Acta Mater., 2008, 56, 2167–2181.
  • Pyzalla A, Camin B, Buslaps T, Michiel MDi, Kaminski H, Kottar A, Pernack A and Reimers W: ‘Simultaneous tomography and diffraction analysis of creep damage’, Science, 2005, 308, 92–95.
  • Sket F, Dzieciol K, Issac A, Borbely A and Pyzalla AR: ‘Tomographic method for evaluation of apparent activation energy of steady state creep’, Mater. Sci. Eng. A, 2010, A257, 2112–2120.
  • Kurumulu D, Payton EJ, Young ML, Schöbel M, Requena G and Eggler G: ‘High temperature strength and damage evolution in short fiber reinforced aluminium alloys studied by miniature creep testing and synchrotron microtomography’, Acta Mater., 2012, 60, 67–78.
  • Issac A, Sket F, Reimers W, Camin B, Sauthoff G and Pyzalla AR: ‘In-situ 3D quantification of the evolution of creep cavity size, shape and spatial orientation using synchrotron tomography’, Mater. Sci. Eng. A, 2008, A478, 108–118.
  • Dzieciol K, Borbely A, Sket F, Issac A, DiMiciel M, Cloetens P, Buslaps T and Pyzalla AR: ‘Void growth in copper during high temperature power law creep’, Acta Mater., 2011, 59, 671–677.
  • Wahab AA and Kral MV: ‘3D Analysis of Creep voids in hydrogen reformer tubes’, Mater. Sci. Eng. A, 2005, A412, 222–229.
  • Wahab AA, Hutchinson CR and Kral MV: ‘A three-dimensional characterisation of creep void formation in hydrogen reformer tubes’, Scr. Mater., 2006, 55, 69–73.
  • Asghar Z, Requena G, Degischer HP and Cloetens P: ‘Three dimensional study of Ni Aluminide in an AlSil2 alloy by means of light optical and synchrotron microtomography’, Acta Mater., 2009, 57, 4125–4132.
  • Requena G, Degischer P, Marks ED and Boller E: ‘Microtomography study of the evolution of microstructure during creep of an AlSil2CuMgNi alloy reinforced with Al2O3 short fibers’, Mater. Sci. Eng. A, 2008, 487A, 99–107.
  • Yazzie KE, Williams JJ, Philips NC, De Carlo F and Chawla N: ‘Multiscale microstructural characterisation of Sn-rich alloys by three dimensional (3D) X-ray synchrotron microtomography and focussed ion beam (FIB) tomography’, Mater. Charact., 2012, 70, 33–41.
  • Ke-shencheong, Stevens KJ, Suzuki Y, Uesugi K and Takeuchi A: ‘The effects if microstructure on creep behaviour – A study through synchrotron microtomography’, Mater. Sci. Eng. A, 2009, A513–A514, 222–227.
  • Sket F, Dzieciol K, Borbely A, Kaysser-Pyzalla AR, Maile K and Scheck R: ‘Microtomographic investigation of damage in E911 steel after long term creep’, Mater. Sci. Eng. A, 2010, 528A, 103–111.
  • Sket F, Issac A, Dzieciol K, Sauthhoff G, Borbely A and Pyzalla AR: ‘In situ tomographic investigation of brass during high temperature creep’, Scr. Mater., 2008, 59, 558–561.
  • Abbasi R, Dzieciol K and Borbély A: ‘Three-dimensional analysis of creep voids in copper by serial sectioning combined with large field EBSD’, Mater. Sci. Technol., 2015, 31, DOI 10.1179/1743284714Y.0000000593.
  • Uchic MD: ‘Serial sectioning methods for generating 3D characterisation data of grain and precipitate scale microstructures’, in ‘Computational methods for microstructure–property relationships’, (ed. Ghosh S and Dimiduk D), 31–57; 2011, New York, Springer.
  • Toda H, Uesugi K, Takeuchi A, Minami K, Kobayashi M and Kobayashi T: ‘Three-dimensional observation of nanoscopic precipitates in an aluminium alloy by microtomography with Fresnel zone plate optics’, Appl. Phys. Lett., 2006, 89, 143112
  • Burnett TL, Mcdonald SA, Gholinia A, Geurts R, Janus M, Slater T, Haigh SJ, Omek C, Almuaili F, Engelberg DL, Thompson GE and Withers PJ: ‘Correlative tomography’, Sci. Rep., 2014, 4, 4711, DOI 10.1038/srep04711.
  • Burnett TL, Geurts R, Jazaeri H, Northover SM, McDonald SA, Haigh SJ, Bouchard PJ and Withers PJ: ‘Multiscale 3D analysis of creep cavities in AISI type 316 stainless steel’, Mater. Sci. Technol., 2015, 31, DOI 10.1179/1743284714Y.0000000639.
  • Robinson EL: ‘Effect of temperature variation on the creep strength of steels’, Trans. ASME, 1938, 160, 253–259.
  • Hart RV: ‘Concept of area-modified stress for life fraction summations during creep’, Met. Technol., 1977, 4, 447–448.
  • Hart RV: ‘Assessment of remaining creep life using accelerated stress rupture tests’, Met. Technol., 1976, 3, 1–7.
  • Hart RV: ‘Comparison of biaxial and uni-axial longtitudinal rupture tests for determination of residual creep life of ferritic heat exchanger tubing’, Met. Technol., 1976, 4, 442–446.
  • Evans HE: ‘Mechanisms of creep fracture’; 1984, Barking, Elsevier Applied Science.
  • Bhadeshia HKDH, Strang A and Gooch DJ: ‘Ferritic power plant steels: remanent life assessment and approach to equilibrium’, Int. Mater. Rev., 1998, 43, 45–69.
  • Philips F: ‘The slow stretch in India rubber glass and metal wire subjected to constant pull’, Philos. Mag., 1905, 9, 513–520.
  • Graham A and Walles KFA: ‘Relation between long and short time properties of commercial alloy’, JISI, 1955, 179, 105–120.
  • McVetty PG: ‘Factors affecting the choice of working stresses for high temperature service’, Trans ASME, 1933, 55, 99–109.
  • S. R. Holdsworth: ‘Constitutive equations for creep curves and predicting service life’, in ‘Creep resistant steels’ (ed. F. Abe. et. al.), 403–420; 2008 Abington; Woodhead/Boca Raton, FL, CRC Press.
  • Norton FN: ‘The creep of steel at high temperature’; 1929, New York, McGraw Hill.
  • Nadai A: ‘The influence of time upon creep, the hyperbolic sine creep law’, in ‘Stephen Timoshenko Anniversary volume’; 1938, New York, Macmillian.
  • Choudhury BK and Smauel EI: ‘Creep behavior of modified 9-Cr1Mo ferritic steel’, J. Nucl. Mater., 2011, 412, 82–89.
  • Samuel EI, Choudhary BK, Palaparti DPR and Mathew MD: ‘Creep deformation and rupture behaviour of P92 Steel at 923K’, Proc. Eng., 2013, 55, 64–69.
  • Palaparti DPR, Samuel EI, Choudhary BK and Mathew MD: ‘Creep properties of Grade 91 steel steam generator tube at 923K’, Proc. Eng., 2013, 55, 70–77.
  • Wilshire B and Scharning PJ: ‘Design data prediction for Grade P92 steel’, Proc. Creep 8: 8th Int. Conf. on ‘Creep and fatigue at elevated temperatures’, ASME Pressure Vessels and Piping Conference, San Antonio, TX, USA, July 2007.
  • Spindler MW and Spindler SL: ‘Creep deformation, rupture and ductility of Esshete 1250 weld metal’, Mater. Sci. Technol., 2014, 30, 17–23.
  • Kassner ME and Perez Prado M.-T: ‘Five power law creep in single phase metals and alloys’, Prog. Mater. Sci., 2000, 1–102.
  • Dimmler G, Weinert P and Cerjack P: ‘Extrapolation of short term creep data – The potential risk of extrapolation’, Int. Press. Vessels Pip., 2008, 85, 55–60.
  • Yavari P and Langdon TG: ‘An examination of breakdown in creep by viscous glide in solid solution alloys at high stress levels’, Acta Mater., 1982, 30, 2181–2190.
  • Chen YX, Yan W, Wang W, Shan YY and Yang K: ‘Constitutive equation of the minimum creep rate for 9%Cr heat resistant steel’, Mater. Sci. Eng. A, 2012, A534, 649–653.
  • McQueen HJ and Ryan ND: ‘Constitutive analysis of hot working’, Mater. Sci. Eng. A, 2002, A322, 43–63.
  • Garofalo F: ‘Fundamentals of creep and creep rupture in metals’; 1965, New York, Macmillan.
  • Cane B and Williams JA: ‘Remaining life prediction of high temperature materials’, Int. Mater. Rev., 1987, 32, 241–262.
  • Davies PW, Evans WJ, Williams KR and Wilshire B: ‘An equation to represent strain/time relationships during high temperature creep’, Scr. Metall., 1969, 3, 671–674.
  • Evans RW and Wilshire B: ‘Creep of metals and alloys’; 1985, London, The Institute of Metals.
  • Motera R: ‘High temperature time dependent allowable stress and isochronous curves of an austenitic MnCr steel’, J. Nucl. Mater., 1988, 155–157, 639–643.
  • Koul AK and Castillo R: ‘A critical assessment of the θ projection concept for creep life prediction of nickel based super – alloy’, Mater. Sci. Eng. A, 1991, A138, 213–219.
  • Wolf H, Mathews MD, Mannan SL and Rodriguez P: ‘Prediction of creep parameters of type 316 stainless steel under service conditions using the θ projection concept’, Mater. Sci. Eng. A, 1992, A159, 199–204.
  • Omprakash CM, Kumar A, Srivathsa B and Satyanarayana DVV: ‘Prediction of creep curves of high temperature alloys using θ-projection concept’, Proc. Eng., 2013, 55, 756–759.
  • Loghman A and Wahab MA: ‘Creep damage simulation of thick walled tubes using the θ Projection concept’, Int. J. Press. Vessels Pip., 1996, 67, 105–111.
  • Fujibayashi S: ‘Creep behavior leading to Type IV cracking for service exposed 2·25Cr-0·5Mo steel welds’, Eng. Fract. Mech., 2007, 74, 932–946.
  • Ghosh RN: ‘Creep life prediction of engineering components: Problems and prospects’, Proc. Eng., 2103, 55, 599–606.
  • Krumphals F, Reggiani B, Donati L, Wlanis T and Sommitsch C: ‘Deformation behaviour of ferritic hot-work tool steel with respect to the microstructure’, Comput. Mater. Sci., 2012, 52, 40–45
  • Leckie FA and Hayhurst HR: ‘Constitutive equations for creep rupture’, Acta Metall., 1977, 25, 1059–1070.
  • Penny RK and Marriot DL: ‘Design for creep’; 1971, New York, McGraw Hill.
  • Krumphals F, Wlanis T, Sievert R, Weiser V and Sommitsch C: ‘Damage analysis of extrusion tools made from austenitic hot work tool steel Böhler W750’, Comput. Mater. Sci., 2011, 50, 1250–1255.
  • Kachanov LM: ‘Time to failure under creep conditions’, Izv. Akad. Navk SSR Otd Teck Nauck, 1958, 8, 26–31.
  • Kachanov LM: ‘Introduction to continuum damage mechanics’; 1986, Dordrecht, Kluwer Academic.
  • Dyson BF and McLean M: ‘Microstructural evolution and its effects on creep performance of high temperature alloy’, in ‘Microstructural stability of creep resistant alloys for high temperature plant applications’, (ed. Strang A et al.), 371–373; 1998, London, IOM Communications.
  • Dyson BF and McLean D: ‘Creep of Nimonic 80A in torsion and tension’, Met. Sci., 1977, 11, 37–45.
  • Dyson BF and McLean M: ‘Particle coarsening, σo and tertiary creep’, Acta Metall., 1983, 31, 17
  • Dyson BF and Leckie FA: ‘Physically based modeling of remanant creep life’, Mater. Sci. Eng. A, 1988, A103, 111–114.
  • Cane BJ: ‘Remaining creep life estimation by strain assessment of plant’, I. J. Press. Vessels Pip., 1982, 10, 11–17.
  • Hore S and Ghosh RN: ‘Computer simulation of high temperature creep behaviour of Cr-Mo steel’, Mater. Sci. Eng. A, 2011, A258, 6095–6102.
  • Blum W, Rosen A, Cegielska A and Martin JL: ‘Two mechanisms of dislocation motion during creep’, Acta Metall., 1989, 37, 2439–2453.
  • Meier M and Blum W: ‘Modelling high temperature creep of academic and industrial materials using the composite model’, Mater. Sci. Eng. A, 1993, A164, 290–294.
  • Sedlacek R and Blum W: ‘Microstructure based constitutive law of plastic deformation’, Comput. Mater. Sci., 2002, 25, 200–206.
  • Mughrabi H: ‘Dislocation wall and cell structures and long range internal stresses in deformed metal crystals’, Acta Metall., 1983, 31, 1367–1379.
  • Barkar T and Agren J: ‘Creep simulaton of 9–12% Cr Steels using the composite model with thermodynamically calculated input’, Mater. Sci. Eng. A, 2005, 395A, 110–115.
  • Hyde TH, Sun W and Williams JA: ‘Requirements and use of miniature test specimens to provide mechanical and creep properties of materials’, Int. Mater. Rev., 2007, 52, 213–255.
  • Thompson RC and Bhadhesia HKDH: ‘Changes in chemical composition of carbides in 2·25Cr-1Mo power plant steel: Part 1’, Mater. Sci. Technol., 1994, 10, 193–204.
  • Thompson RC and Bhadeshia HKDH: ‘Changes in chemical composition of carbides in 2·25Cr-1Mo power plant steel: Part 2’, Mater. Sci. Technol., 1994, 10, 205–208.
  • Lonsdale D and Flewitt PEJ: ‘Damage accumulation and microstructural changes occurring during creep of a 2·25%Cr–1%Mo steel’, Mater. Sci. Eng., 1979, 39, 217–229.
  • Blum W and Gotz G: ‘Evolution of dislocation structure in martensitic steels: The subgrain size as a sensor for creep strain and residual creep life’, Steel Res., 1999, 70, 274–278.
  • Frouz AA, Collins MJ and Pilkington R: ‘Microstructural examination of 1Cr-O-5Mo steel during creep’, Met. Technol., 1983, 10, 461–463.
  • Hofer P, Cerjack H, Schaffermak B and Warbichlet P: ‘Quantification of precipitates in advanced creep resistant 9-12% Cr steels’, Steel Res., 1998, 69, 343–348.
  • Parker JD and James JD: ‘Disk bend creep deformation behaviour in 0·5Cr0·5Mo0·25V low alloy steel’, Creep Fract. Eng. Struct., 1993, 651–660.
  • J. P. Rouse, F. Cortellino, W. Sun, T. H. Hyde and J. Shingledecker: ‘Small punch creep testing: review on modelling and data interpretation’, Mater. Sci. Technol., 2013, 29, 1328–1345.
  • Miliscka K and Dobes F: ‘Small punch testing of P91 steel’, Int. J. Press. Vessels Pip., 2006, 83, 625–634.
  • Ule B, Sturm R and Leskovsek V: ‘Effets of test specimen geometry on creep behaviour of 12 Cr steel in miniature disk bend tests’, Mater. Sci. Technol., 2003, 19, 1771–1776.
  • Komazaki S, Kato T, Kohno Y and H Tanigawa: ‘Creep property measurements of welded joint of reduced activated ferritic martensitic steel by small punch creep test’, Mater. Sci. Eng. A, 2009, A510, 229–233.
  • Dobes F and Miliscka K: ‘On the Monkman Grant relation for small punch test data’, Mater. Sci. Eng. A, 2002, A336, 245–248.
  • Chakrabarty J: ‘A theory of stretch forming over hemispherical punch heads’, Int. J. Mech. Sci., 1970, 12, 315–325.
  • G. Eggeler, J. C. Earthman, N. Nilsvang, B. Ilschner: ‘Microstructural study of creep rupture in a 12% Chromium ferritic steel’. Acta. Metall. 1989, 37,49–60.
  • Renversade L, Ruoff H, Maile K, Sket F and Borbely A: ‘Microtomographic assessment of damage in P91 and 911 steels after long term creep’, Int. J. Mater. Res., 2014, 105, 621–627.
  • Riedel H: ‘Fracture at high temperature’; 1987, Berlin, Springer-Verlag.
  • Sket F, Dzieciol K, Borbely A, Kaysser-Pyzalla AR, Maile K and Scheck R: ‘Microtomographic investigation of damage in E911 steel after long term creep’, Mater. Sci. Eng. A, 2010, A528, 103–111.
  • Schlacher C, Pelzmann T, Beal C, Sommitsch C, Gupta C, Toda H and Mayr P: ‘Investigation of creep damage in advanced martensitic chromium steel weldments using synchrotron X-ray micro-tomography and EBSD’, Mater. Sci. Technol., 2015, 31, DOI: 10.1179/1743284714Y.0000000621.
  • Landes JD and Begeley JA: ‘A fracture mechanics approach to creep crack growth’, in ‘Mechanics of crack growth’, STP590, 128–148; 1976, Philadelphia, PA, American Society for Testing and Materials.
  • Dobes F and Miliscka K: ‘The relation between minimum creep rate and time to fracture’, Met. Sci., 1976, 10, 382–384.
  • V. Raman and S. V. Raj: ‘An analysis of harper � dorn creep based on specimen size effects’, Scripta. Metall., 1985, 19, 629–634.
  • Coules HE: ‘Contemporary approaches to reducing weld induced residual stress’, Mater. Sci. Technol., 2013, 29, 4–18.
  • Lieberman SI, Gokhale AM and Tamirisakandala S: ‘Reconstructions of three dimensional microstructures of TiB phase in a powder metallurgy titanium alloy using montage serial sectioning’, Scr. Mater., 2006, 55, 63–68.
  • Li J.-R and Yu L.-L.: ‘Computational simulation of intergranular fracture of polycrystalline materials and size effect’, Eng. Fract. Mech., 2005, 72, 2009–2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.