161
Views
12
CrossRef citations to date
0
Altmetric
Research Papers

Microstructural evolution and corresponding property changes after deep cryotreatment of tool steel

&
Pages 1867-1878 | Received 15 Nov 2014, Accepted 28 Feb 2015, Published online: 25 Apr 2015

References

  • M. Albert: ‘Cutting tools in the deep freeze’, Modern Machine Shop(USA), 1992, 64, (8), 54–61.
  • R. F. Barron: ‘Cryogenic treatment of metals to improve wear resistance’, Cryogenics, 1982, 22, (8), 409–413. doi: 10.1016/0011-2275(82)90085-6
  • V. Leskovšek, M. Kalin and J. Vižintin: ‘Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS’, Vacuum, 2006, 80, (6), 507–518. doi: 10.1016/j.vacuum.2005.08.023
  • M. Preciado, P. M. Bravo and J. M. Alegre: ‘Effect of low temperature tempering prior cryogenic treatment on carburized steels’, J. Mater. Process. Technol., 2006, 176, (1–3), 41–44. doi: 10.1016/j.jmatprotec.2006.01.011
  • H. Liu, J. Wang, H. Yang and B. Shen: ‘Effects of cryogenic treatment on microstructure and abrasion resistance of CrMnB high-chromium cast iron subjected to sub-critical treatment’, Mater. Sci. Eng. A, 2008, A478, (1–2), 324–328. doi: 10.1016/j.msea.2007.06.012
  • P. Baldissera: ‘Deep cryogenic treatment of AISI 302 stainless steel. Part I. Hardness and tensile properties’, Mater. Des., 2010, 31, (10), 4725–4730. doi: 10.1016/j.matdes.2010.05.013
  • D. Das, A. K. Dutta and K. K. Ray: ‘Sub-zero treatments of AISI D2 steel. Part I. Microstructure and hardness’, Mater. Sci. Eng. A, 2010, A527, (9), 2182–2193. doi: 10.1016/j.msea.2009.10.070
  • R. Barron: ‘Effect of cryogenic treatment on lathe tool wear’, Refrig. Sci. Technol., 1973, 1, 529–534.
  • D. Das, A. K. Dutta, V. Toppo and K. K. Ray: ‘Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel’, Mater. Manuf. Processes, 2007, 22, (4), 474–480. doi: 10.1080/10426910701235934
  • D. Collins and J. Dormer: ‘Deep cryogenic treatment of a D2 cold-worked tool steel’, Heat Treat. Met., 1997, 3, 71–74.
  • Y. M. Rhyim, S. H. Han, Y. S. Na and J. H. Lee: ‘Effect of deep cryogenic treatment on carbide precipitation and mechanical properties of tool steel’, Solid State Phenom., 2006, 118, 9–14. doi: 10.4028/www.scientific.net/SSP.118.9
  • V. V. Dymchenko and V. N. Safronova: ‘Refrigeration treatment of quenched roll steel’, Tyazh. Mashinostr., 1993, 9, 29–32.
  • K. Moore and D. N. Collins: ‘Cryogenic treatment of three heat-treated tool steels’, Key Eng. Mater., 1993, 86, 47–54. doi: 10.4028/www.scientific.net/KEM.86-87.47
  • H. E. Bayer: ‘Can I benefit from the use of low temperature treatment’, Steel Process, 1953, 502–508.
  • D. Mohan Lal, S. Renganarayanan and A. Kalanidhi: ‘Cryogenic treatment to augment wear resistance of tool and die steels’, Cryogenics, 2001, 41, (3), 149–155. doi: 10.1016/S0011-2275(01)00065-0
  • V. Wilson: ‘Ultra-cold treatment up heavy duty tool wear’, Iron Age, 1971, 207, (6), 58.
  • F. Meng, K. Tagashira, R. Azuma and H. Sohma: ‘Role of eta-carbide precipitation's in the wear resistance improvements of Fe–12–Cr–Mo–V–1.4C tool steel by cryogenic treatment’, ISIJ Int., 1994, 34, (2), 205–210. doi: 10.2355/isijinternational.34.205
  • L. Cheng, C. M. Brakman, B. M. Korevaar and E. J. Mittemeijer: ‘The tempering of iron– carbon martensite dilatometric and calorimetric analysis’, Metall. Trans. A, 1988, 19A, (10), 2415–2426. doi: 10.1007/BF02645469
  • L. Cheng, N. M. Pers, A. Böttger, T. H. Keijser and E. J. Mittemeijer: ‘Lattice changes of iron–carbon martensite on aging at room temperature’, Metall. Trans. A, 1991, 22A, (9), 1957–1967. doi: 10.1007/BF02669863
  • K. A. Taylor, G. B. Olson, M. Cohen and J. B. Vander Sande: ‘Carbide precipitation during stage I tempering of Fe–Ni–C martensites’, Metall. Trans. A, 1989, 20A, (12), 2749–2765. doi: 10.1007/BF02670168
  • R. E. Reed-Hill and R. Abbaschian: ‘Physical metallurgy principles’, 3rd edn; 1992, Boston, MA, PWS-KENT.
  • G. Parrish: ‘Carburizing: microstructures and properties’; 1999, Materials Park, OH, ASM International.
  • P. Baldissera: ‘Fatigue scatter reduction through deep cryogenic treatment on the 18NiCrMo5 carburized steel’, Mater. Des., 2009, 30, (9), 3636–3642. doi: 10.1016/j.matdes.2009.02.019
  • A. Bensely, S. Venkatesh, D. Mohan Lal, G. Nagarajan, A. Rajadurai and K. Junik: ‘Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel’, Mater. Sci. Eng. A, 2008, A479, (1–2), 229–235. doi: 10.1016/j.msea.2007.07.035
  • D. Das, A. K. Dutta and K. K. Ray: ‘Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel’, Wear, 2009, 267, (9–10), 1371–1380. doi: 10.1016/j.wear.2008.12.051
  • D. Das and K. K. Ray: ‘Structure–property correlation of sub-zero treated AISI D2 steel’, Mater. Sci. Eng. A, 2012, A541, (0), 45–60. doi: 10.1016/j.msea.2012.01.130
  • J. Li, L. Tang, S. Li and X. Wu: ‘FEM simulation and experimental verification of temperature field and phase transformation in deep cryogenic treatment’, Trans. Nonferrous Met. Soc. China, 2012, 22, (10), 2421–2430. doi: 10.1016/S1003-6326(11)61480-5
  • A. Akhbarizadeh, M. A. Golozar, A. Shafeie and M. Kholghy: ‘Effects of austenizing time on wear behavior of D6 tool steel after deep cryogenic treatment’, J. Iron Steel Res. Int., 2009, 16, (6), 29–32. doi: 10.1016/S1006-706X(10)60023-4
  • A. Oppenkowski, S. Weber and W. Theisen: ‘Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels’, J. Mater. Process. Technol., 2010, 210, (14), 1949–1955. doi: 10.1016/j.jmatprotec.2010.07.007
  • K. Amini, A. Akhbarizadeh and S. Javadpour: ‘Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic heat treatment’, Vacuum, 2012, 86, (10), 1534–1540. doi: 10.1016/j.vacuum.2012.02.013
  • K. Amini, A. Akhbarizadeh and S. Javadpour: ‘Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel’, Int. J. Miner. Metall. Mater., 2012, 19, (9), 795–799. doi: 10.1007/s12613-012-0630-2
  • M. S. Blanter, I. S. Golovin, H. Neuhäuser and H. -R. Sinning: ‘Internal friction in metallic materials—a handbook’; 2007, Berlin, Springer.
  • A. S. Nowick and B. S. Berry: ‘Anelastic relaxation in crystalline solids’, 176–224; 1972, New York, Academic Press.
  • T. Kê: ‘Fifty-year study of grain-boundary relaxation’, Metall. Mater. Trans. A, 1999, 30A, (9), 2267–2295.
  • J. San Juan: ‘Mechanical spectroscopy’, in ‘Mechanical spectroscopy Q− 1’ (ed. R. Schaller, et al.,), 32–73; 2001, Uetikon-Zuerich, Trans Tech Publications Ltd.
  • C. Wert and J. Marx: ‘A new method for determining the heat of activation for relaxation processes’, Acta Metall., 1953, 1, (2), 113–115. doi: 10.1016/0001-6160(53)90047-9
  • I. S. Golovin, H. Neuhäuser, A. Rivière and A. Strahl: ‘Anelasticity of Fe–Al alloys, revisited’, Intermetallics, 2004, 12, (2), 125–150. doi: 10.1016/j.intermet.2003.10.003
  • P. R. Bevington: ‘Data reduction and error analysis,or the physical science’, 235; 1969, New York, McGraw-Hill.
  • P. L. Rossiter: ‘The electrical resistivity of metals and alloys’; 1991, Cambridge, Cambridge University Press.
  • W. J. Poole and B. Raeisinia: ‘Electrical resistivity measurements: a sensitive tool for studying aluminium alloys’, Mater. Sci. Forum, 2006, 519, 1391–1396.
  • F. R. Fickett: ‘Aluminum—1. A review of resistive mechanisms in aluminum’, Cryogenics, 1971, 11, (5), 349–367. doi: 10.1016/0011-2275(71)90036-1
  • F. Khodabakhshi and M. Kazeminezhad: ‘The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel’, Mater. Des., 2011, 32, (6), 3280–3286. doi: 10.1016/j.matdes.2011.02.032
  • G. R. Speich and W. C. Leslie: ‘Tempering of steel’, Metall. Trans., 1972, 3, (5), 1043–1054. doi: 10.1007/BF02642436
  • G. Krauss: ‘Deformation and fracture in martensitic carbon steels tempered at low temperatures’, Metall. Mater. Trans. A, 2001, 32A, (4), 861–877. doi: 10.1007/s11661-001-0344-y
  • Y. Wang, M. Gu, L. Sun and K. L. Ngai: ‘Mechanism of Snoek–Köster relaxation in body-centered-cubic metals’, Phys. Rev. B, 1994, 50B, (6), 3525–3531. doi: 10.1103/PhysRevB.50.3525
  • K. L. Ngai: Comments Solid State Phys., 1979, 9, 121–129.
  • K. L. Ngai, S. L. Peng and K. Y. Tsang: ‘Fractal phase transport dynamics and relaxations in complex correlated systems’, Phys. A, 1992, 191, (1–4), 523–531. doi: 10.1016/0378-4371(92)90576-C
  • L. B. Magalas and K. L. Ngai: ‘Critical experimental data on the Snoek–Köster relaxation and their explanation by the coupling model’ (ed. A. Wolfenden, et al.,), 1304, 189–203; 1997, Philadelphia, PA, ASTM special Technical Publication.
  • L. B. Magalas: ‘Snoek–Köster relaxation. New insights—new paradigms’, J. Phys. IV, 1996, 6, (C8), 163–172.
  • ‘ASTM E975-00: standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation, ASTM Book of Standards, vol. 03.01’; 2004, West Conshohocken, PA, ASTM.
  • S. Li, Y. Xie and X. Wu: ‘Hardness and toughness investigations of deep cryogenic treated cold work die steel’, Cryogenics, 2010, 50, (2), 89–92. doi: 10.1016/j.cryogenics.2009.12.005
  • J. Li, L. Tang, S. Li and X. Wu: ‘Finite element simulation of deep cryogenic treatment incorporating transformation kinetics’, Mater. Des., 2013, 47, (0), 653–666. doi: 10.1016/j.matdes.2012.12.076
  • J. A. Mathews: ‘Retained austenite—a contribution to the metallurgy of magnetism’, Trans. Am. Soc. Steel Treat., 1925, 8, (5), 565–583.
  • O. E. Harder and R. L. Dowdell: ‘The decomposition of the austenite structure in steels with use of liquid oxygen’, Trans. Am. Soc. Steel Treat., 1927, 11, 391–399.
  • P. Gordon, M. Cohen and R. S. Rose: ‘The kinetics of austenite decomposition in high speed steel’, Trans. ASM, 1943, 3, 161–216.
  • O. N. Mohanty: ‘On the stabilization of retained austenite: mechanism and kinetics’, Mater. Sci. Eng. B, 1995, B32, (3), 267–278. doi: 10.1016/0921-5107(95)03017-4
  • E. Robert, R. Hill and R. Abbaschian: ‘Physical metallurgy principles’, 3rd edn; 1992, Boston, MA, PWS-Kent.
  • K. R. Kinsman and J. C. Shyne: ‘The thermal stabilization of austenite’, Acta Metall., 1966, 14, (9), 1063–1072. doi: 10.1016/0001-6160(66)90194-5
  • D. V. Edmonds, K. He, F. C. Rizzo, B. C. De Cooman, D. K. Matlock and J. G. Speer: ‘Quenching and partitioning martensite—a novel steel heat treatment’, Mater. Sci. Eng. A, 2006, A438–A440, (0), 25–34. doi: 10.1016/j.msea.2006.02.133
  • J. Speer, D. K. Matlock, B. C. De Cooman and J. G. Schroth: ‘Carbon partitioning into austenite after martensite transformation’, Acta Mater., 2003, 51, (9), 2611–2622. doi: 10.1016/S1359-6454(03)00059-4
  • M. E. Blanter: ‘Thermal stabilization of austenite’, Met. Sci. Heat Treat., 1972, 14, (5), 439–440. doi: 10.1007/BF00649831
  • H. K. D. H. Bhadeshia: ‘Material factors’, in ‘Handbook of residual stress and deformation of steel’ (ed. G. Totten, et al.,), 3–10; 2002, Materials Park, OH, ASM International.
  • D. Senthilkumar, I. Rajendran, M. Pellizzari and J. Siiriainen: ‘Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel’, J. Mater. Process. Technol., 2011, 211, (3), 396–401. doi: 10.1016/j.jmatprotec.2010.10.018
  • J. L. Snoek: ‘Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron’, Physica, 1941, 8, (7), 711–733. doi: 10.1016/S0031-8914(41)90517-7
  • A. H. Cottrell and B. A. Bilby: ‘Dislocation theory of yielding and strain ageing of iron’, Proc. Phys. Soc. Sect. A, 1949, 62, (1), 49. doi: 10.1088/0370-1298/62/1/308
  • S. Li, N. Min, L. Deng, X. Wu, Y. Min and H. Wang: ‘Influence of deep cryogenic treatment on internal friction behavior in the process of tempering’, Mater. Sci. Eng. A, 2011, A528, (3), 1247–1250.
  • S. Li, L. Deng, X. Wu, H. Wang, Y. Min and N. Min: ‘Effect of deep cryogenic treatment on internal friction behaviors of cold work die steel and their experimental explanation by coupling model’, Mater. Sci. Eng. A, 2010, A527, (29–30), 7950–7954. doi: 10.1016/j.msea.2010.08.086
  • L. B. Magalas: ‘On the interaction of dislocations with interstitial atoms in BCC metals using mechanical spectroscopy: the cold work (CW) peak, the Snoek–Köster (SK) peak, and the Snoek–Kê–Köster (SKK) peak’, Acta Metall. Sinica, 2003, 39, (11), 1145–1152.
  • G. Schoeck: ‘Internal friction due to precipitation’, Phys. Status Solidi, 1969, 32, (2), 651–658. doi: 10.1002/pssb.19690320216
  • W. Yening, G. Min and S. Linhai: ‘Mechanism of mechanical relaxation associated with precipitates’, J. Phys. Condens. Matter, 1989, 1, (50), 10039–10045. doi: 10.1088/0953-8984/1/50/006
  • B. S. Berry: ‘Review of internal friction due to point defects’, Acta Metall., 1962, 10, (4), 271–280. doi: 10.1016/0001-6160(62)90002-0
  • D. Das, A. K. Dutta and K. K. Ray: ‘On the refinement of carbide precipitates by cryotreatment in AISI D2 steel’, Philos. Mag. Lett., 2008, 88, (11), 801–811. doi: 10.1080/09500830802380788
  • P. Stratton and M. Graf: ‘The effect of deep cold induced nano-carbides on the wear of case hardened components’, Cryogenics, 2009, 49, (7), 346–349. doi: 10.1016/j.cryogenics.2009.03.007
  • P. F. Stratton: ‘Optimising nano-carbide precipitation in tool steels’, Mater. Sci. Eng. A, 2007, A449–A451, 809–812. doi: 10.1016/j.msea.2006.01.162
  • V. G. Gavriljuk, W. Theisen, V. V. Sirosh, E. V. Polshin, A. Kortmann, G. S. Mogilny, Y. N. Petrov and Y. V. Tarusin: ‘Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment’, Acta Mater., 2013, 61, (5), 1705–1715. doi: 10.1016/j.actamat.2012.11.045
  • D. Das and K. K. Ray: ‘On the mechanism of wear resistance enhancement of tool steels by deep cryogenic treatment’, Philos. Mag. Lett., 2012, 92, (6), 295–303. doi: 10.1080/09500839.2012.669052
  • K. L. Ngai and L. B. Magalas: ‘Applications of the coupling model to some problems in mechanical spectroscopy of metals’, Mater. Sci. Forum, 1993, 119–121, 49–60. doi: 10.4028/www.scientific.net/MSF.119-121.49
  • J. Li, Y. Feng, L. Tang and X. Wu: ‘FEM prediction of retained austenite evolution in cold work die steel during deep cryogenic treatment’, Mater. Lett., 2013, 100, (0), 274–277. doi: 10.1016/j.matlet.2013.03.046
  • J. Akré, F. Danoix, H. Leitner and P. Auger: ‘The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM’, Ultramicroscopy, 2009, 109, (5), 518–523. doi: 10.1016/j.ultramic.2008.11.010
  • M. S. Bhat, W. M. Garrison Jr. and V. F. Zackay: ‘Relations between microstructure and mechanical properties in secondary hardening steels’, Mater. Sci. Eng., 1979, A41, (1), 1–15. doi: 10.1016/0025-5416(79)90038-7
  • W. Rong and G. L. Dunlop: ‘The crystallography of secondary carbide precipitation in high speed steel’, Acta Metall., 1984, 32, (10), 1591–1599. doi: 10.1016/0001-6160(84)90218-9
  • A. Bensely, A. Prabhakaran, D. Mohan Lal and G. Nagarajan: ‘Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment’, Cryogenics, 2005, 45, (12), 747–754. doi: 10.1016/j.cryogenics.2005.10.004
  • G. Thomas: ‘Retained austenite and tempered martensite embrittlement’, Metall. Trans. A, 1978, 9, (3), 439–450. doi: 10.1007/BF02646396
  • S. Zhirafar, A. Rezaeian and M. Pugh: ‘Effect of cryogenic treatment on the mechanical properties of 4340 steel’, J. Mater. Process. Technol., 2007, 186, (1–3), 298–303. doi: 10.1016/j.jmatprotec.2006.12.046
  • V. Leskovsek and B. Ule: ‘Influence of deep cryogenic treatment on microstructure, mechanical properties and dimensional changes of vacuum heat-treated high-speed steel’, Heat Treat. Met., 2002, 29, (3), 72–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.