1,152
Views
33
CrossRef citations to date
0
Altmetric
Special Issue Papers

Nanoindentation characterised plastic deformation of a Al0.5CoCrFeNi high entropy alloy

, , , &
Pages 1244-1249 | Received 30 Dec 2014, Accepted 19 Mar 2015, Published online: 25 Apr 2015

References

  • Yeh J. W.: ‘Recent progress in high-entropy alloys’, Ann. Chim. Sci. Mater., 2006, 31, 633–648.
  • Yeh J. W., Chen S. K., Lin S. J., Gan J. Y., Chin T. S., Shun T. T., Tsau C. H. and Chang S. Y.: ‘Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes’, Adv. Eng. Mater., 2004, 6, 299–303.
  • Senkov O. N., Wilks G. B., Miracle D. B., Chuang C. P. and Liaw P. K.: ‘Refractory high-entropy alloys’, Intermetallics, 2010, 18, 1758–1765.
  • Liu W. H., Wu Y., He J. Y., Nieh T. G. and Lu Z. P.: ‘Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy’, Scr. Mater., 2013, 68, 526–529.
  • Zhang W. Q., Lou C. S., Wu X. C., Fu H. M. and Zhang H. F.: ‘Microstructures and mechanical property of AlCoNiCrFe alloy annealed in high magnetic field’, Mater. Sci. Technol.; http://dx.doi.org/10.1179/1743284714Y.0000000698 2014..
  • Qiao J. W., Ma S. G., Huang E. W., Chuang C. P., Liaw P. K. and Zhang Y.: ‘Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures’, Mater. Sci. Forum, 2011, 688, 419–425.
  • Zhang Y., Zuo T. T., Tang Z., Gao M. C., Dahmen K. A., Liaw P. K. and Lu Z. P.: ‘Microstructures and properties of high-entropy alloys’, Prog. Mater. Sci., 2014, 61, 1–93.
  • Cantor B., Chang I. T. H., Knight P. and Vincent A.: ‘Microstructural development in equiatomic multicomponent alloys’, Mater. Sci. Eng. A, 2004, A375–A377, 213–218.
  • Yeh J. W., Lin S. J., Chin T. S., Gan J. Y., Chen S. K., Shun T. T., Tsau C. H. and Chang S. Y.: ‘Formation of simple crystal structures in solid solution alloys with multiprincipal metallic elements’, Metall. Mater. Trans. A, 2004, 35A, 2533–2536.
  • Fischer-Cripps A. C.: ‘Nanoindentation’; 2011, New York, Springer.
  • Oliver W. C. and Pharr G. M.: ‘An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments’, J. Mater. Res., 1992, 7, 1564–1583.
  • Oliver W. C. and Pharr G. M.: ‘Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology’, J. Mater. Res., 2004, 19, 3–20.
  • Dao M., Chollacoop N., Van vliet K. J., Venkatesh T. A. and Suresh S.: ‘Computational modeling of the forward and reverse problems in instrumented sharp indentation’, Acta Mater., 2001, 49, 3899–3918.
  • Fischer-Cripps A. C.: ‘A simple phenomenological approach to nanoindentation creep’, Mater. Sci. Eng. A, 2004, A385, 74–82.
  • Suresh S. and Giannakopoulos A. E.: ‘A new method for estimating residual stresses by instrumented sharp indentation’, Acta Mater., 1998, 46, 5755–5767.
  • Zhu C., Lu Z. P. and Nieh T. G.: ‘Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy’, Acta Mater., 2013, 61, 2993–3001.
  • Wang W. R., Wang W. L. and Yeh J. W.: ‘Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures’, J. Alloys Compd, 2014, 589, 143–152.
  • Wang W. J., Guo S., Wang Q., Liu Z. Y., Wang J. C., Yang Y. and Liu C. T.: ‘Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi’, Intermetallics, 2014, 53, 183–186.
  • Simmons G. and Wang H.: ‘Single crystal elastic constants and calculated aggregate properties’; 1971, Cambridge, MA, The M.I.T Press.
  • Wang W. R., Wang W. L., Wang S. C., Tsai Y. C., Lai C. H. and Yeh J. W.: ‘Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys’, Intermetallics, 2012, 26, 44–51.
  • Xiao G. S., Yuan G. Z., Jia C. N., Yang X. X., Li Z. G. and Shu X. F.: ‘Strain rate sensitivity of Sn-3.0Ag-0.5Cu solder investigated by nanoindentation’, Mater. Sci. Eng. A, 2014, A613, 336–339.
  • Chudoba T. and Richter F.: ‘Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results’, Surf. Coat. Technol., 2001, 148, 191–198.
  • Milman Y. V., Golubenko A. A. and Dub S. N.: ‘Indentation size effect in nanohardness’, Acta Mater., 2011, 59, 7480–7487.
  • Manika L. and Maniks J.: ‘Size effects in micro- and nanoscale indentation’, Acta Mater., 2006, 54, 2049–2056.
  • Lucas B. N. and Oliver W. C.: ‘Indentation power-law creep of high-purity indium’, Metall. Mater. Trans. A, 1999, 30A, 601–610.
  • Schuh C. A. and Nieh T. G.: ‘A nanoindentation study of serrated flow in bulk metallic glasses’, Acta Mater., 2003, 51, 87–99.
  • Kubin L. P., Chihab K. and Estrin Y.: ‘The rate dependence of the portevin-Le chatelier effect’, Acta Metall., 1988, 36, 2707–2718.
  • Senkov O. N. and Jonas J. J.: ‘Dynamic strain aging and hydrogen-induced softening in alpha titanium’, Metall. Mater. Trans. A, 1996, 27A, 1877–1887.
  • Antonaglia J., Xie X., Tang Z., Tsai C. W., Qiao J. W., Zhang Y., Laktionova M. O., Tabachnikova E. D., Carroll R., Yeh J. W., Senkov O. N., Gao M., Uhl J. T., Liaw P. K. and Dahmen K. A.: ‘Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)’, JOM, 2014, 66, 2002–2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.