431
Views
43
CrossRef citations to date
0
Altmetric
Original Article

Fabrication of biomedical Ti–35Nb–7Zr–5Ta alloys by mechanical alloying and spark plasma sintering

, , , &
Pages 65-70 | Received 05 May 2011, Accepted 07 Aug 2011, Published online: 12 Nov 2013

References

  • Balazic JKMatej, Jackson MJ, Ahmed W: ‘Titanium and titanium alloy applications in medicine’, Int. J. Nano Biomater., 2007, 1, (1), 3–34.
  • Geetha M, Singh AK, Asokamani R, Gogia AK: ‘Ti based biomaterials, the ultimate choice for orthopaedic implants – a review’, Prog. Mater. Sci., 2009, 54, (3), 397–425.
  • Niinomi M: ‘Recent metallic materials for biomedical applications’, Metall. Mater. Trans. A, 2002, 33A, (3), 477–486.
  • Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T: ‘Design and mechanical properties of new [beta] type titanium alloys for implant materials’, Mater. Sci. Eng. A, 1998, A243, (1–2), 244–249.
  • Niinomi M: ‘Mechanical properties of biomedical titanium alloys’, Mater. Sci. Eng. A, 1998, A243, (1–2), 231–236.
  • Delvat E, Gordin DM, Gloriant T, Duval JL, Nagel MD: ‘Microstructure, mechanical properties and cytocompatibility of stable beta Ti–Mo–Ta sintered alloys’, J. Mech. Behav. Biomed. Mater., 2008, 1, (4), 345–351.
  • Wang YH, Lin JP, He YH, Wang YL, Chen GL: ‘Fabrication and SPS microstructures of Ti–45Al–8·5Nb–(W,B,Y) alloying powders’, Intermetallics, 2008, 16, (2), 215–224.
  • Froes FH, Eylon D, Eichelman GE, Burte HM: ‘Developments in titanium powder metallurgy’, JOM, 1980, 32, (2), 47–54.
  • Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB: ‘Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy’, Scr. Mater., 2011, 65, (1), 21–24.
  • Talling RJ, Dashwood RJ, Jackson M, Dye D: ‘On the mechanism of superelasticity in gum metal’, Acta Mater., 2009, 57, (4), 1188–1198.
  • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: ‘Enhanced functions of osteoblasts on nanophase ceramics’, Biomaterials, 2000, 21, (17), 1803–1810.
  • Webster TJ, Ejiofor JU: ‘Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo’, Biomaterials, 2004, 25, (19), 4731–4739.
  • Munir Z, Anselmi-Tamburini U, Ohyanagi M: ‘The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method’, J. Mater. Sci., 2006, 41, (3), 763–777.
  • Li YY, Yang C, Qu SG, Li XQ, Chen WP: ‘Nucleation and growth mechanism of crystalline phase for fabrication of ultrafine-grained Ti66Nb13Cu8Ni6·8Al6·2 composites by spark plasma sintering and crystallization of amorphous phase’, Mater. Sci. Eng. A, 2010, A528, (1), 486–493.
  • Li YY, Yang C, Chen WP, Li XQ, Qu SG: ‘Ultrafine-grained Ti66Nb13Cu8Ni6·8Al6·2 composites fabricated by spark plasma sintering and crystallization of amorphous phase’, J. Mater. Res., 2009, 24, (6), 2118–2122.
  • Li YY, Yang C, Wei T, Li XQ, Qu SG: ‘Ductile fine-grained Ti–O-based composites with ultrahigh compressive specific strength fabricated by spark plasma sintering’, Mater. Sci. Eng. A, 2011, A528, (3), 1897–1900.
  • Nouri A, Chen X, Li Y, Yamada Y, Hodgson PD, Wen CE: ‘Synthesis of Ti–Sn–Nb alloy by powder metallurgy’, Mater. Sci. Eng. A, 2008, A485, (1–2), 562–570.
  • Li YY, Yang C, Chen WP, Li XQ, Zhu M: ‘ Oxygen-induced amorphization of metallic titanium by ball milling’, J. Mater. Res., 2007, 22, (7), 1927–1932.
  • Taddei EB, Henriques VAR, Silva CRM, Cairo CAA: ‘Production of new titanium alloy for orthopedic implants’, Mater. Sci. Eng. C, 2004, C24, (5), 683–687.
  • Zhang F, Weidmann A, Nebe BJ, Burkel E: ‘Preparation of TiMn alloy by mechanical alloying and spark plasma sintering for biomedical applications’, Journal of Physics: Conference Series, , 2009, 144, (1), 012007:1–5.
  • Henriques VAR, Galvani ET, Petroni SLG, Paula MSM, Lemos TG: ‘Production of Ti–13Nb–13Zr alloy for surgical implants by powder metallurgy’, J. Mater. Sci., 2010, 45, (21), 5844–5850.
  • Cvijović-Alagić I, Cvijović Z, Mitrović S, Rakin M, Veljović Đ, Babić M: ‘Tribological behaviour of orthopaedic Ti–13Nb–13Zr and Ti–6Al–4V alloys’, Tribol. Lett., 2010, 40, (1), 59–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.