240
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement in Ti–6Al–4V sintering via nanostructured powder and spark plasma sintering

, , , , &
Pages 147-154 | Received 27 Sep 2013, Accepted 15 Dec 2013, Published online: 15 Jan 2014

References

  • Niinomi M.: ‘Recent metallic materials for biomedical applications’, Metall. Mater. Trans. A, 2002, 33A, 477–486.
  • Niinomi M.: ‘Mechanical biocompatibilities of titanium alloys for biomedical applications’, J. Mech. Behav. Biomed. Mater., 2008, 1, 30–42.
  • Hu X., Shen H., Cheng Y., Xiong X., Wang S., Fang J. and Wei S.: ‘One-step modification of nano-hydroxyapatite coating on titanium surface by hydrothermal method’, Surf. Coat. Technol., 2010, 205, 2000–2006.
  • Dewidar M. M. and Kim J. K.: ‘Properties of solid core and porous surface Ti–6Al–4V implants manufactured by powder metallurgy’, J. Alloys Compd, 2008, 454, 442–446.
  • Wei M., Ruys A. J., Swain M. V., Milthorpe B. K. and Sorrell C. C.: ‘Hydroxyapatite-coated metals: interfacial reactions during sintering’, J. Mater. Sci.: Mater. Med., 2005, 16, 101–106.
  • Guo S. B., Qu X. H., He X. B., Zhou T. and Duan B. H.: ‘Powder injection molding of Ti–6Al–4V alloy’, J. Mater. Process. Technol., 2006, 173, 310–314.
  • Jo Y. J., Lee C. M., Jang H. S., Lee N. S., Suk J.-H. and Lee W. H.: ‘Mechanical properties of fully porous and porous-surfaced Ti–6Al–4V implants fabricated by electro-discharge-sintering’, J. Mater. Process. Technol., 2007, 194, 121–125.
  • Kim K. T. and Yang H. C.: ‘Densification behavior of titanium alloy powder during hot pressing’, Mater. Sci. Eng. A, 2001, A313, 46–52.
  • Tasdemirci A., Hızal A., Altındis M., Hall I. W. and Guden M.: ‘The effect of strain rate on the compressive deformation behavior of a sintered Ti6Al4V powder compact’, Mater. Sci. Eng. A, 2008, A474, 335–341.
  • Lee W. H. and Hyun C. Y.: ‘Fabrication of fully porous and porous-surfaced Ti–6Al–4V implants by electro-discharge-sintering of spherical Ti–6Al–4V powders in an one-step process’, J. Mater. Process. Technol., 2007, 189, 219–223.
  • Dewidar M. M. and Lim J. K.: ‘Properties of solid core and porous surface Ti–6Al–4V implants manufactured by powder metallurgy’, J. Alloys Compd, 2008, 454, 442–446.
  • Nicula R., Luthen F., Stir M., Nebe B. and Burkel E.: ‘Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications’, Biomol. Eng., 2007, 24, 564–567.
  • Bautista A., Moral C., Blanco G. and Velasco F.: ‘Influence of sintering on the corrosion behavior of a Ti–6Al–4V alloy’, Mater. Corros., 2005, 56, 98–103.
  • Guden M., Celik T. E., Akar E. and Cetiner S.: ‘Compression testing of a sintered Ti6Al4V powder compact for biomedical applications’, Mater. Charact., 2005, 54, 399– 408.
  • Klug H. P. and Alexander L. E.: ‘X-ray diffraction procedures for polycrystalline and amorphous materials’; 1954, London, John Wiley & Sons, Inc.
  • Shaw L., Villegas J., Luo H. and Miracle D.: ‘Thermal stability of nanostructured Al93Fe3Ti2Cr2 alloys prepared via mechanical alloying’, Acta Mater., 2003, 51, 2647–2663.
  • Aikin BJM and Courtney T. H.: ‘The Kinetics of composite particle formation during mechanical alloying’, Metall. Trans. A, 1993, 24A, 647–657.
  • Zawrah M. and Shaw L.: ‘Microstructure and hardness of nanostructured Al–Fe–Cr–Ti alloys through mechanical alloying’, Mater. Sci. Eng. A, 2003, A355, 37–49.
  • Shaw L., Zawrah M., Villegas J., Luo H. and Miracle D.: ‘Effects of process control agents on mechanical alloying of nanostructured aluminum alloys’, Metall. Mater. Trans. A, 2003, 34A, 159–170.
  • Fecht H. J., Hellstern E., Fu Z. and Johnson W. L.: ‘Nanocrystalline metals prepared by high-energy ball milling’, Metall. Trans. A, 1990, 21A, 2333–2337.
  • Belyakov A., Sakai T., Miura H. and Tsuzaki K.: ‘Grain refinement in copper under large strain deformation’, Philos. Mag. A, 2001, 81A, 2629–2643.
  • Koch C. C.: ‘The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review’, Nanostruct. Mater., 1993, 2, 109–129.
  • Suryanarayana C.: ‘Mechanical alloying and milling’, Prog. Mater. Sci., 2001, 46, 1–184.
  • Umemoto M., Todaka K. and Tsuchiya K.: ‘Formation of nanocrystalline structure in carbon steels by ball drop and particle impact techniques’, Mater. Sci. Eng. A, 2004, A375–A377, 899–904.
  • Herring C.: ‘Effect of change of scale on sintering phenomena’, J. Appl. Phys., 1950, 21, 301–303.
  • German R. M.: ‘Powder metallurgy science’, 2nd edn; 1994, Princeton, NJ, Metal Powder Industries Federation.
  • Brooks C. R.: ‘Heat treatment, structure and properties of nonferrous alloys’; 1990, Materials, ParkOH, American Society for Metals.
  • Herzig C., Wilger T., Przeorski T., Hisker F. and Divinski S.: ‘Titanium tracer diffusion in grain boundaries of α-Ti, α2-Ti3Al, and γ-TiAl and in α2/γ interphase boundaries’, Intermetallics, 2001, 9, 431–442.
  • Volante M., Fubini B., Giamello E. and Bolis V.: ‘Reactivity induced by grinding in silicon nitride’, J. Mater. Sci., 1989, 8, 1076–78.
  • Lin I. J. and Nadiv S.: ‘Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment (mechanochemical reactions)’, Mater. Sci. Eng., 1979, 39, 193–209.
  • Butyagin PYu: ‘Mechanochemical reactions of solids with gases’, React. Solids, 1986, 1, 345–359.
  • Ren R.-M., Yang Z.-G. and Shaw L.: ‘Synthesis of nanostructured silicon carbide through integrated mechanical and thermal activation process’, J. Am. Ceram. Soc., 2002, 85, 819–827.
  • Shaw L., Yang Z.-G. and Ren R.-M.: ‘Mechanically enhanced reactivity of Si for the formation of Si3N4 composites’, J. Am. Ceram. Soc., 1998, 81, 760–764.
  • Greshovich C. and Rosolowski J. H.: ‘Sintering of covalent solids’, J. Am. Ceram. Soc., 1976, 59, 336–343.
  • Comley P.: ‘Multi-rate superplastic forming of fine grain Ti–6Al–4V titanium alloy’, J. Mater. Eng. Perform., 2007, 16, 150–154.
  • Song X., Liu X. and Zhang J.: ‘Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering’, J. Am. Ceram. Soc., 2006, 89, 494–500.
  • Chaim R., Levin M., Shlayer A. and Estournès C.: ‘Sintering and densification of nanocrystalline ceramic oxide powders: a review’, Adv. Appl. Ceram., 2008, 27, 159–169.
  • Orrù R., Licheri R., Locci A. M., Cincotti A. and Cao G.: ‘Consolidation/synthesis of materials by electric current activated/assisted sintering’, Mater. Sci. Eng. R, 2009, R63, 127–287.
  • Munir Z. A., Quach D. V. and Ohyanagi M.: ‘Electric current activation of sintering: a review of the pulsed electric current sintering process’, J. Am. Ceram. Soc., 2011, 94, 1–19.
  • Eriksson E., Shen Z. and Nygren M.: ‘Fast densification and deformation of titanium powder’, Powder Metall., 2005, 48, 231–236.
  • Zadra M., Casari F., Girardini L. and Molinari A.: ‘Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering’, Powder Metall., 2008, 51, 59–65.
  • Carr G. L., Perkowitz S. and Tanner D. B.: ‘Far-infrared properties of inhomogeneous materials’, in ‘Infrared and millimeter waves’, Chap. 6, 184; 1985, Orlando, FL, Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.