Publication Cover
Redox Report
Communications in Free Radical Research
Volume 15, 2010 - Issue 5
460
Views
31
CrossRef citations to date
0
Altmetric
Reviews

The role of heme oxygenase and carbon monoxide in inflammatory bowel disease

, , &
Pages 193-201 | Published online: 19 Jul 2013

References

  • Asakura K, Nishiwaki Y, Inoue N, Hibi T, Watanabe M, Takebayashi T. Prevalence of ulcerative colitis and Crohn's disease in Japan. J Gastroenterol 2009; 44: 659–665.
  • Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347: 417–429.
  • Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448: 427–434.
  • Naito Y, Takagi T, Yoshikawa T. Heme oxygenase-1: a new therapeutic target for inflammatory bowel disease. Aliment Pharmacol Ther 2004; 20 (Suppl 1): 177–184.
  • Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997; 37: 517–554.
  • Sassa S. Biological implications of heme metabolism. J Clin Biochem Nutr 2006; 38: 138–155.
  • Shibahara S. Regulation of heme oxygenase gene expression. Semin Hemato11988; 25: 370-376.
  • Igarashi K, Sun J. The heme-Bachl pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal 2006; 8: 107–118.
  • Morse D, Lin L, Choi AM, Ryter SW Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radic Biol Med 2009; 47: 1–12.
  • Morse D, Choi AM. Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med 2005; 172: 660–670.
  • Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 2003; 24: 449–455.
  • Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Pathol 1999; 276: L688–L694.
  • Kaizu T, Ikeda A, Nakao A et al. Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. Am J Physiol 2008; 294: G236–G244.
  • Kaizu T, Nakao A, Tsung A et al. Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery 2005; 138: 229–235.
  • Nakao A, Kimizuka K, Stolz DB et al. Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury. Am J Pathol 2003; 163: 1587–1598.
  • Nakao A, Toyokawa H, Abe M et al. Heart allograft protection with low-dose carbon monoxide inhalation: effects on inflammatory mediators and alloreactive T-cell responses. Transplantation 2006; 81: 220–230.
  • Neto JS, Nakao A, Kimizuka K et al. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol 2004; 287: F979–F989.
  • Takagi T, Naito Y, Inoue M et al. Inhalation of carbon monoxide ameliorates collagen-induced arthritis in mice and regulates the articular expression of IL-lbeta and MCP-1. Inflammation 2009; 32: 83–88.
  • Tsui TY, Obed A, Siu YT et al. Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism. Shock 2007; 27: 165–171.
  • Hegazi RA, Rao KN, Mayle A, Sepulveda AR, Otterbein LE, Plevy SE. Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1-dependent pathway. J Exp Med 2005; 202: 1703–1713.
  • Takagi T, Naito Y, Mizushima K et al. Inhalation of carbon monoxide ameliorates TNBS-induced colitis in mice through the inhibition of TNF-alpha expression. Dig Dis Sci 2010; In press.
  • Zuckerbraun BS, Otterbein LE, Boyle P et al. Carbon monoxide protects against the development of experimental necrotizing enterocolitis. Am J Physiol 2005; 289: G607–G613.
  • Takagi T, Naito Y, Mizushima K et al. Increased intestinal expression of heme oxygenase-1 and its localization in patients with ulcerative colitis. J Gastroenterol Hepatol 2008; 23 (Suppl 2): S229–S233.
  • Takagi T, Naito Y, Tsuboi H et al. Increased intestinal luminal carbon monoxide gas in patients with ulcerative colitis Aliment Pharmacol Ther 2006; 24 (Suppl 4): 233–238.
  • Maestrelli P, El Messlemani AH, De Fina 0 et al. Increased expression of heme oxygenase (H0)-1 in alveolar spaces and HO-2 in alveolar walls of smokers. Am J Respir Crit Care Med 2001; 164: 1508–1513.
  • Yoshiki N, Kubota T, Aso T. Identification of heme oxygenase in human endometrium. J Clin Endocrinol Metab 2001; 86: 5033–5038.
  • Barton SG, Rampton DS, Winrow VR, Domizio P, Feakins RM. Expression of heat shock protein 32 (hemoxygenase-1) in the normal and inflamed human stomach and colon: an immunohistochemical study. Cell Stress Chaperones 2003; 8: 329–334.
  • Paul G, Bataille F, Obermeier F et al. Analysis of intestinal haem-oxygenase-1 (H0-1) in clinical and experimental colitis. Clin Exp Immunol. 2005; 140: 547–555.
  • Miller SM, Reed D, Sarr MG, Farrugia G, Szurszewski JH. Haem oxygenase in enteric nervous system of human stomach and jejunum and co-localization with nitric oxide synthase. Neurogastroenterol Motil 2001; 13: 121–131.
  • Ny L, Alm P, Larsson B, Andersson KE. Morphological relations between haem oxygenases, NO-synthase and VIP in the canine and feline gastrointestinal tracts. J Auton Nerv Syst 1997; 65: 49–56.
  • Farrugia G, Miller SM, Rich A et al. Distribution of heme oxygenase and effects of exogenous carbon monoxide in canine jejunum. Am J Physiol 1998; 274: G350–G358.
  • Grozdanovic Z, Gossrau R. Expression of heme oxygenase-2 (HO-2)-like immunoreactivity in rat tissues. Acta Histochem 1996; 98: 203–214.
  • Hu Y, Yang M, Ma N, Shinohara H, Semba R. Contribution of carbon monoxide-producing cells in the gastric mucosa of rat and monkey. Histochem Cell Biol 1998; 109: 369–373.
  • Ny L, Alm P, Ekstrom P, Larsson B, Grundemar L, Andersson KE. Localization and activity of haem oxygenase and functional effects of carbon monoxide in the feline lower oesophageal sphincter. Br J Pharmacol 1996; 118: 392-399.
  • Attuwaybi B, Kozar RA, Gates KS et al. Hypertonic saline prevents inflammation, injury, and impaired intestinal transit after gut ischemia/reperfusion by inducing heme oxygenase 1 enzyme. J Trauma 2004; 56: 749–758, discussion 58-59.
  • Attuwaybi BO, Hassoun HT, Zou L et al. Hypothermia protects against gut ischemia/reperfusion-induced impaired intestinal transit by inducing heme oxygenase-1. J Surg Res 2003; 115: 48–55.
  • Attuwaybi BO, Kozar RA, Moore-Olufemi SD et al. Heme oxygenase-1 induction by hemin protects against gut ischemia/reperfusion injury. J Surg Res 2004; 118: 53–57.
  • Mallick IH, Winslet MC, Seifalian AM. Ischemic preconditioning of small bowel mitigates the late phase of reperfusion injury: heme oxygenase mediates cytoprotection. Am J Surg 2010; 199: 223–231.
  • Mallick IH, Yang W, Winslet MC, Seifalian AM. Protective effects of ischemic preconditioning on the intestinal mucosal microcirculation following ischemia-reperfusion of the intestine. Microcirculation 2005; 12: 615–625.
  • Mallick IH, Yang WX, Winslet MC, Seifalian AM. Pyrrolidine dithiocarbamate reduces ischemia-reperfusion injury of the small intestine. World J Gastroenterol 2005; 11: 7308–7313.
  • Sakamoto N, Kokura S, Okuda T et al. Heme oxygenase-1 (Hsp32) is involved in the protection of small intestine by whole body mild hyperthermia from ischemia/reperfusion injury in rat. Int J Hyperthermia 2005; 21: 603–614.
  • Tamaki T, Konoeda Y, Yasuhara M et al. Glutamine-induced heme oxygenase-1 protects intestines and hearts from warm ischemic injury. Transplant Proc 1999; 31: 1018–1019.
  • Wasserberg N, Pileggi A, Salgar SK et al. Heme oxygenase-1 upregulation protects against intestinal ischemia/reperfusion injury: a laboratory based study. Int J Surg 2007; 5: 216–224.
  • Harusato A, Naito Y, Takagi T et al. Inhibition of Bachl ameliorates indomethacin-induced intestinal injury in mice. J Physiol Pharmacol 2009; 60 (Suppl 7): 149–154.
  • Higuchi K, Yoda Y, Amagase K et al. Prevention of NSAID-induced small intestinal mucosal injury: prophylactic potential of lansoprazole. J Clin Biochem Nutr 2009; 45: 125–130.
  • Pang Q, Ji Y, Li Y, Bermudez-Humaran LG, Hu G, Zeng Y. Intragastric administration with recombinant Lactococcus lactis producing heme oxygenase-1 prevents lipopolysaccharide-induced endotoxemia in rats. FEMS Microbiol Lett 2008; 283: 62–68.
  • Ping W, Qizi Y, Hesheng O, Lijia T, Jun Y, Chaoshu T. Endogenous heme oxygenase/carbon monoxide system mediates lipopolysaccharide-induced intussusception in rats. Chin Med Sci J 2000; 15: 89–92.
  • Tamion F, Richard V, Renet S, Thuillez C. Protective effects of heme-oxygenase expression against endotoxic shock: inhibition of tumor necrosis factor-alpha and augmentation of interleukin-10. J Trauma 2006; 61: 1078–1084.
  • Tamion F, Richard V, Renet S, Thuillez C. Intestinal preconditioning prevents inflammatory response by modulating heme oxygenase-1 expression in endotoxic shock model. Am J Physiol 2007; 293: G1308–G1314.
  • Uehara K, Takahashi T, Fujii H et al. The lower intestinal tract-specific induction of heme oxygenase-1 by glutamine protects against endotoxemic intestinal injury. Crit Care Med 2005; 33: 381–390.
  • Abbasoglu SD, Erbil Y, Eren T et al. The effect of heme oxygenase-1 induction by octreotide on radiation enteritis. Peptides 2006; 27: 1570–1576.
  • Gins M, Erbil Y, Oztezcan S et al. The effect of heme oxygenase-1 induction by glutamine on radiation-induced intestinal damage: the effect of heme oxygenase-1 on radiation enteritis. Am J Surg 2006; 191: 503–509.
  • Hsu JT, Kan WH, Hsieh CH et al. Mechanism of estrogen-mediated intestinal protection following trauma-hemorrhage: p38 MAPK-dependent upregulation of HO-1. Am J Physiol 2008; 294: R1825–R1831.
  • Pang QF, Ji Y, Bermudez-Humaran LG, Zhou QM, Hu G, Zeng Y. Protective effects of a heme oxygenase- 1 -secreting Lactococcus lactis on mucosal injury induced by hemorrhagic shock in rats. J Surg Res 2009; 153: 39–45.
  • Tamion F, Richard V, Bonmarchand G, Leroy J, Lebreton JP, Thuillez C. Induction of heme-oxygenase-1 prevents the systemic responses to hemorrhagic shock. Am J Respir Crit Care Med 2001; 164: 1933–1938.
  • Tamion F, Richard V, Lacoume Y, Thuillez C. Intestinal preconditioning prevents systemic inflammatory response in hemorrhagic shock. Role of HO-1. Am J Physiol 2002; 283: G408–G414.
  • Umeda K, Takahashi T, Inoue K et al. Prevention of hemorrhagic shock-induced intestinal tissue injury by glutamine via heme oxygenase-1 induction. Shock 2009; 31: 40–49.
  • Gan HT, Chen JD. Induction of heme oxygenase-1 improves impaired intestinal transit after burn injury. Surgery 2007; 141: 385–393.
  • Li X, Schwacha MG, Chaudry IH, Choudhry MA. Heme oxygenase-1 protects against neutrophil-mediated intestinal damage by down-regulation of neutrophil p47phox and p67phox activity and 02- production in a two-hit model of alcohol intoxication and burn injury. J Immunol 2008; 180: 6933–6940.
  • Gins M, Erbil Y, Dogru-Abbasoglu S et al. The effect of heme oxygenase-1 induction by glutamine on TNBS-induced colitis. The effect of glutamine on TNBS colitis. Int J Colorectal Dis 2007; 22: 591–599.
  • Coeffier M, Le Pessot F, Leplingard A etal. Acute enteral glutamine infusion enhances heme oxygenase-1 expression in human duodenal mucosa. J Nutr 2002; 132: 2570–2573.
  • Wang WP, Guo X, Koo MW et al. Protective role of heme oxygenase-1 on trinitrobenzene sulfonic acid-induced colitis in rats. Am J Physiol 2001; 281: G586–G594.
  • Naito Y, Takagi T, Tomatsuri N. Role of heme oxygenase-1 in dextran sulfate sodium-induced intestinal inflammation in mice. Gastroenterology 2003; 124 (Suppl): A-490.
  • Takagi T, Naito Y, Katada K. Heme oxygenase regulates the balance of inflammatory cytokines in dextran sulfate sodium-induced colitis. Gastroenterology 2004; 126 (Suppl): A-564.
  • Berberat PO, YI AR, Yamashita K et al. Heme oxygenase- 1 - generated biliverdin ameliorates experimental murine colitis. Inflamm Bowel Dis 2005; 11: 350–359.
  • Sun X, Suzuki K, Nagata M et al. Rectal administration of tranilast ameliorated acute colitis in mice through increased expression of heme oxygenase-1. Pathol Int 2010; 60: 93–101.
  • Zhong W, Xia Z, Hinrichs D etal. Hemin exerts multiple protective mechanisms and attenuates dextran sulfate sodium-induced colitis. J Pediatr Gastroenterol Nutr 2010; 50: 132–139.
  • Erbil Y, Gins M, Abbasoglu SD et al. Effect of heme oxygenase-1 induction by octreotide on TNBS-induced colitis. J Gastroenterol Hepatol 2007; 22: 1852–1858.
  • Horvath K, Varga C, Berko A, Posa A, Laszlo F, Whittle BJ. The involvement of heme oxygenase-1 activity in the therapeutic actions of 5-aminosalicylic acid in rat colitis. Eur J Pharmacol 2008; 581: 315–323.
  • Jun CD, Kim Y, Choi EY et al. Gliotoxin reduces the severity of trinitrobenzene sulfonic acid-induced colitis in mice: evidence of the connection between heme oxygenase-1 and the nuclear factor-kappaB pathway in vitro and in vivo. Inflamm Bowel Dis 2006; 12: 619–629.
  • Lee SH, Sohn DH, Jin XY, Kim SW, Choi SC, Seo GS. 2',4',6'-Tris(methoxymethoxy) chalcone protects against trinitrobenzene sulfonic acid-induced colitis and blocks tumor necrosis factor-alpha-induced intestinal epithelial inflammation via heme oxygenase 1-dependent and independent pathways. Biochem Pharmacol 2007; 74: 870–880.
  • Varga C, Laszlo F, Fritz P et al. Modulation by heme and zinc protoporphyrin of colonic heme oxygenase-1 and experimental inflammatory bowel disease in the rat. Eur J Pharmacol 2007; 561: 164–171.
  • Brusko TM, Wasserfall CH, Agarwal A, Kapturczak MH, Atkinson MA. An integral role for heme oxygenase-1 and carbon monoxide in maintaining peripheral tolerance by CD4+CD25+ regulatory T cells. J Immunol 2005; 174: 5181–5186.
  • George JF, Braun A, Brusko TM et al. Suppression by CD4*CD25* regulatory T cells is dependent on expression of heme oxygenase-1 in antigen-presenting cells. Am J Pathol 2008; 173: 154–160.
  • Croog VJ, Ullman TA, Itzkowitz SH. Chemoprevention of colorectal cancer in ulcerative colitis. Int J Colorectal Dis 2003; 18: 392–400.
  • Nakao A, Kaczorowski DJ, Sugimoto R, Billiar TR, McCurry KR. Application of heme oxygenase-1, carbon monoxide and biliverdin for the prevention of intestinal ischemia/reperfusion injury. J Clin Biochem Nutr 2008; 42: 78–88.
  • Alonso JR, Cardellach F, Lopez S, Casademont J, Miro O. Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol Toxicol 2003; 93: 142–146.
  • Zuckerbraun BS, Chin BY, Bilban M et al. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J 2007; 21: 1099–1106.
  • Taille C, El-Benna J, Lanone S, Boczkowski J, Motterlini R. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 2005; 280: 25350–25360.
  • Nakao A, Faleo G, Shimizu H et al. Ex vivo carbon monoxide prevents cytochrome P450 degradation and ischemia/reperfusion injury of kidney grafts. Kidney Int 2008; 74: 1009–1016.
  • Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M. Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H(2)S gas biology. Antioxid Redox Signal 2010; In press.
  • Denninger JW, Marletta MA. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1999; 1411: 334–350.
  • Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP. Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 2000; 184: 409–420.
  • Liu H, Mount DB, Nasjletti A, Wang W Carbon monoxide stimulates the apical 70-pS IC' channel of the rat thick ascending limb. J Clin Invest 1999; 103: 963–970.
  • Brouard S, Otterbein LE, Anrather J et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 2000; 192: 1015–1026.
  • Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP. Heme oxygenase- 1 -derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 2002; 277: 17950–17961.
  • Zhang X, Shan P, Otterbein LE et al. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem 2003; 278: 1248–1258.
  • Otterbein LE, Bach FH, Alam J et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000; 6: 422–428.
  • Sarady JK, Otterbein SL, Liu F, Otterbein LE, Choi AM. Carbon monoxide modulates endotoxin-induced production of granulocyte macrophage colony-stimulating factor in macrophages. Am J Respir Cell Mol Biol 2002; 27: 739–745.
  • Reed JA, Whitsett JA. Granulocyte-macrophage colony-stimulating factor and pulmonary surfactant homeostasis. Proc Assoc Am Phys 1998; 110: 321–332.
  • Liu SH, Ma K, Xu B, Xu XR. Protection of carbon monoxide intraperitoneal administration from rat intestine injury induced by lipopolysaccharide. Chin Med J ( Engl) 2010; 123: 1039–1046.
  • Liu SH, Ma K, Xu XR, Xu B. A single dose of carbon monoxide intraperitoneal administration protects rat intestine from injury induced by lipopolysaccharide. Cell Stress Chaperones 2010; In press.
  • Liu SH, Xu XR, Ma K, Xu B. Protection of carbon monoxide inhalation on lipopolysaccharide-induced multiple organ injury in rats. Chin Med Sci J2007; 22: 169-176.
  • De Backer O, Elinck E, Blanckaert B, Leybaert L, Motterlini R, Lefebvre RA. Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/H0-1 signalling and reduction of oxidative stress. Gut 2009; 58: 347–356.
  • Moore BA, Otterbein LE, Turler A, Choi AM, Bauer AJ. Inhaled carbon monoxide suppresses the development of postoperative ileus in the murine small intestine. Gastroenterology 2003; 124: 377–391.
  • Moore BA, Overhaus M, Whitcomb Jet al. Brief inhalation of low-dose carbon monoxide protects rodents and swine from postoperative ileus. Crit Care Med 2005; 33: 1317–1326.
  • Nakao A, Schmidt J, Harada T etal. A single intraperitoneal dose of carbon monoxide-saturated Ringer's lactate solution ameliorates postoperative ileus in mice. J Pharmacol Exp Ther 2006; 319: 1265–1275.
  • Nakao A, Kimizuka K, Stolz DB et al. Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts. Surgery 2003; 134: 285–292.
  • Nakao A, Moore BA, Murase N et al. Immunomodulatory effects of inhaled carbon monoxide on rat syngeneic small bowel graft motility. Gut 2003; 52: 1278–1285.
  • Nakao A, Toyokawa H, Tsung A et al. Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant 2006; 6: 2243–2255.
  • Guo Y, Stein AB, Wu WJ et al. Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol 2004; 286: H1649–H1653.
  • Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res 2002; 90: E17–E24.
  • Clark JE, Naughton P, Shurey Set al. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res 2003; 93: e2–e8.
  • Sun B, Sun Z, Jin Q, Chen X. CO-releasing molecules (CORM-2)-liberated CO attenuates leukocytes infiltration in the renal tissue of thermally injured mice. Int J Biol Sci 2008; 4: 176–183.
  • Vera T, Henegar JR, Drummond HA, Rimoldi JM, Stec DE. Protective effect of carbon monoxide-releasing compounds in ischemia-induced acute renal failure. J Am Soc Nephrol 2005; 16: 950–958.
  • Cepinskas G, Katada K, Bihari A, Potter RE Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol 2008; 294: G184–G191.
  • Sun BW, Chen ZY, Chen X, Liu C. Attenuation of leukocytes sequestration by carbon monoxide-releasing molecules: liberated carbon monoxide in the liver of thermally injured mice. J Burn Care Res 2007; 28: 173–181.
  • Sun B, Sun H, Liu C, Shen J, Chen Z, Chen X. Role of CO-releasing molecules liberated CO in attenuating leukocytes sequestration and inflammatory responses in the lung of thermally injured mice. J Surg Res 2007; 139: 128–135.
  • Chen P, Sun B, Chen H etal. Effects of carbon monoxide releasing molecule-liberated CO on severe acute pancreatitis in rats. Cytokine 2010; 49: 15–23.
  • Katada K, Bihari A, Mizuguchi Set al. Carbon monoxide liberated from CO-releasing molecule (CORM-2) attenuates ischemia/reperfusion (I/R)-induced inflammation in the small intestine. Inflammation 2010; 33: 92–100.
  • Liu DM, Sun BW, Sun ZW, Jin Q, Sun Y, Chen X. Suppression of inflammatory cytokine production and oxidative stress by CO-releasing molecules-liberated CO in the small intestine of thermally-injured mice. Acta Pharmacol Sin 2008; 29: 838–846.
  • Boyko EJ, Koepsell TD, Perera DR, Inui TS. Risk of ulcerative colitis among former and current cigarette smokers. N Engl J Med 1987; 316: 707–710.
  • de Saussure P, Clerson P, Prost PL, Truong Tan N, Bouhnik Y, Gil R. Appendectomy, smoking habits and the risk of developing ulcerative colitis: a case control study in private practice setting. Gastroenterol Clin Biol 2007; 31: 493–497.
  • Jick H, Walker AM. Cigarette smoking and ulcerative colitis. N Engl J Med 1983; 308: 261–263.
  • Okamoto R, Watanabe M. Cellular and molecular mechanisms of the epithelial repair in IBD. Dig Dis Sci 2005; 50 (Suppl 1): S34–S38.
  • Uchiyama K, Naito Y, Takagi T et al. Carbon monoxide enhance colonic epithelial restitution via FGF15 derived from colonic myofibroblasts. Biochem Biophys Res Commun 2010; 391: 1122–1126.
  • Mayr FB, Spiel A, Leitner J et al. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med 2005; 171: 354–360.
  • Bathoorn E, Slebos DJ, Postma DS et al. Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J2007; 30: 1131-1137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.