239
Views
22
CrossRef citations to date
0
Altmetric
Research Paper

Surface mechanical attrition treated AISI 304L steel: role of process parameters

, &
Pages 69-78 | Received 30 Dec 2014, Accepted 30 Mar 2015, Published online: 29 Apr 2015

References

  • Tao N., Zhang H., Lu J. and Lu K.: ‘Development of nanostructures in metallic materials with low stacking fault energies during surface mechanical attrition treatment (SMAT)’, Mater. Trans., 2003, 44, (10), 1919–1925. doi: 10.2320/matertrans.44.1919
  • Balusamy T., Sankara Narayanan T. S. N., Ravichandran K., Park I. S. and Lee M. H.: ‘Plasma nitrding of AISI 304 stainless steel: role of surface mechanical attrition treatment’, Mater. Charact., 2013, 85, 38–47. doi: 10.1016/j.matchar.2013.08.009
  • Frontan J., Zhang Y., Dao M., Lu J., Galvez F. and Jerusalem A.: ‘Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel’, Acta Mater., 2012, 60, 1353–1367. doi: 10.1016/j.actamat.2011.11.029
  • Gatey A. M., Hosmani S. S., Singh R. K. P. and Suwas S.: ‘Surface engineering of stainless steel: role of surface mechanical attrition treatment (SMAT)’, Adv. Mater. Res., 2013, 794, 238–247. doi: 10.4028/www.scientific.net/AMR.794.238
  • Chen A. Y., Ruan H. H., Wang J., Chan H. L., Wang Q., Li Q. and Lud J.: ‘The influence of strain rate on the microstructure transition of 304 stainless steel’, Acta Mater., 2011, 59, 3697–3709. doi: 10.1016/j.actamat.2011.03.005
  • Roland T., Retraint D., Lub K. and Luc J.: ‘Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability’, Mater. Sci. Eng. A, 2007, A445-A446, 281–288. doi: 10.1016/j.msea.2006.09.041
  • Zhang H. W., Hei Z. K., Liu G., Lu J. and Lu K.: ‘Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment’, Acta Mater., 2003, 51, 871–1881.
  • Balusamy T., Sankara Narayanan T. S. N., Ravichandran K., Park S. and Lee M. H.: ‘Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel’, Corros. Sci., 2013, 74, 332–344. doi: 10.1016/j.corsci.2013.04.056
  • Chemkhi M., Retraint D., Roos A., Garnier C., Waltz L., Demangel C. and Proust G.: ‘The effect of surface mechanical attrition treatment on low temperature plasma nitriding of an austenitic stainless steel’, Surf. Coat. Technol., 2013, 221, 191–195. doi: 10.1016/j.surfcoat.2013.01.047
  • Samih Y., Beausir B., Bolle B. and Grosdidier T.: ‘In-depth quantitative analysis of the microstructures produced by surface mechanical attrition treatment (SMAT)’, Mater. Charact., 2013, 83, 129–138. doi: 10.1016/j.matchar.2013.06.006
  • Talonen J. and Hänninen H.: ‘Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels’, Acta Mater., 2007, 55, 6108–6118. doi: 10.1016/j.actamat.2007.07.015
  • De A. K., Murdock D. C., Mataya M. C., Speer J. G. and Matlock D. K.: ‘Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction’, Scr. Mater., 2004, 50, 1445–1449. doi: 10.1016/j.scriptamat.2004.03.011
  • Cullity B. D.: ‘Elements of X-ray diffraction’, in ‘Diffraction II – intensities of diffracted beams’, 2nd edn, Chap. 4, 121–136; 1978, Reading, MA, Addison-Wesley.
  • Hauslid P., Davydov V., Drahokoupil J., Landa M. and Pilvin P.: ‘Characterization of strain induced martensite transformation in a metastable austenitic stainless steel’, Mater. Des., 2010, 31, 1821–1827. doi: 10.1016/j.matdes.2009.11.008
  • Monshi A., Foroughi M. R. and Monshi M. R.: ‘Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD’, World J. Nanosci. Eng., 2012, 2, 154–160. doi: 10.4236/wjnse.2012.23020
  • Murr E., Moin E., Greuich F. and Stadhammer K. P.: ‘The contribution of deformation twins to yield stress: the Hall–Petch law for inter twine spacing’, Scr. Metall., 1978, 12, 1031–1035. doi: 10.1016/0036-9748(78)90019-4
  • Shen Y. F., Li X. X., Sun X., Wang Y. D. and Zuo L.: ‘Twinning and martensite in a 304 austenitic stainless steel’, Mater. Sci. Eng. A, 2012, A552, 514–522. doi: 10.1016/j.msea.2012.05.080
  • Davis J.: ‘Analytical modeling and application of residual stresses induced by shot peening’, PhD thesis, University of Washington, Seattle, WA, USA, 7–8; 2012.
  • Staudhammer K. P., Murr L. E. and Hecker S. S.: ‘Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: a transmission electron microscope study’, Acta Mater., 1983, 31, 267–274. doi: 10.1016/0001-6160(83)90103-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.