Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 109, 2010 - Issue 8: Ceramic Armour
69
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Strain rate dependence of hardness of AlN doped SiC

, &
Pages 493-497 | Published online: 18 Jul 2013

References

  • J. Swab: ’Recommendations for determining the hardness of armor ceramics’, Int. J. Appl. Ceram. Technol, 2004, 1, (3), 219–225.
  • D. M. Marsh: ’Plastic flow in glass’, Proc. R. Soc. A, 1963, 279A, 420–435.
  • K. Suzuki, Y. Benino, T. Fujiwara and T. Komatsu: ’Densification energy during nanoindentation of silica glass’, J. Am. Ceram. Soc., 2002, 85, (12), 3102–3104.
  • A. P. Gerk and D. Tabor: ’Indentation hardness and semiconduc-tormetal transition of germanium and silicon’, Nature, 1978, 271, 732–733.
  • L. J. Vandeperre, F. Giuliani, S. J. Lloyd and W. J. Clegg: ’The hardness of silicon and germanium’, Acta Mater., 2007, 55, (18), 6307–6315.
  • E. R. Weppelman, J. S. Field and M. V. Swain: ’Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters’, J. Mater. Res., 1993, 8, (4), 830–840.
  • J. E. Bradby, J. S. Williams, J. Wong-Leung, S. O. Kucheyev, M. V. Swain and P. Munroe: ’Spherical indentation of compound semiconductors’, Philos. Mag. A, 2002, 82A, (10), 1931–1939.
  • D. E. Niesz and J. W. McCauley: ’Advanced metals and ceramics for armor and anti-armor applications high-fidelity design and processing of advanced armor ceramics’, ARL-CR-594, Army Research Laboratory, Adelphi, MD, USA, 2007.
  • D. Tabor: ’The physical meaning of indentation and scratch tests’, Br. J. Appl. Phys., 1956, 7, 159–166.
  • Y. T. Cheng and C. M. Cheng: ’What is indentation hardness?’, Surf Coat. Technol, 2000, 133–134, 417–424.
  • Y. T. Cheng and C. M. Cheng: ’Can stress—strain relationships be obtained from indentation curves using conical and pyramidal indenters’, J. Mater. Res., 1999, 14, (9), 3493–3496.
  • R. Hill, E. H. Lee and S. J. Tupper: ’The theory of wedge indentation of ductile materials’, Proc. R Soc. A, 1947, 188A, 273–289.
  • D. S. Dugdale: ’Wedge indentation experiments with worked metals’, J. Mech. Phys. Solids, 1953, 2, 14–26.
  • W. Hirst and G. J. W. Howse: ’The indentation of materials by wedges’, Proc. R Soc. A, 1969, 311A, 429–444.
  • D. Tabor: ’Hardness of metals’; 1951, Oxford, Clarendon Press.
  • A. G. Atkins and D. Tabor: ’Plastic indentation in metals with cones’, J. Mech. Phys. Solids, 1965, 13, 149–164.
  • Y. T. Cheng and Z. Li: ’Hardness obtained from conical indenters with various cone angles’, J. Mater. Res., 2000, 15, (12), 2830–2835.
  • L. J. Vandeperre, F. Giuliani and W. J. Clegg: ’Effect of elastic surface deformation on the relation between hardness and yield strength’, J. Mater. Res., 2004, 19, (12), 3704–3714.
  • P. D. Warren: ’Fracture of brittle materials: effects of test method and threshold stress on the Weibull modulus’, J. Eur. Ceram. Soc., 2001, 21, (3), 335–342.
  • S. Basu, A. Moseson and M. W. Barsoum: ’On the determination of spherical nanoindentation stress—strain curves’, J. Mater. Res., 2006, 21, (10), 2628–2637.
  • A. C. Fischer-Cripps: ’Elastic—plastic behaviour in materials loaded with a spherical indenter’, J. Mater. ScL, 1997, 32, 727–736.
  • C. A. Tweedie and K. J. van Vliet: ’Contact creep compliance of viscoelastic materials via nanoindentation’, J. Mater. Res., 2006, 21, (6), 1576–1589.
  • M. L. Oyen and R. F. Cook: ’Load—displacement behavior during sharp indentation of viscous-elastic—plastic materials’, J. Mater. Res., 2003, 18, (1), 139–150.
  • S. S. Chiang, D. B. Marshall and A. G. Evans: ’The response of solids to elastic/plastic indentation. II. Fracture initiation’, J. Appl. Phys., 1982, 53, (1), 312–317.
  • B. R. Lawn and D. B. Marshall: ’Hardness, toughness, and brittleness: an indentation analysis’, J. Am. Ceram. Soc., 1979, 62, (7-8), 347–350.
  • P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall: ’A critical evaluated of indentation techniques for measuring fracture toughness. II. Strength method’, J. Am. Ceram. Soc., 1981, 64, (9), 539–543.
  • R. F. Cook and G. M. Pharr: ’Direct observation and analysis of indentation cracking in glasses and ceramics’, J. Am. Ceram. Soc., 1990, 73, (4), 787–817.
  • P. Grau, G. Berg, H. Meinhard and S. Mosch: ’Strain rate dependence of the hardness of glass and Meyer’s law’, J. Am. Ceram. Soc., 1998, 81, (6), 1557–1564.
  • N. M. Keulen: ’Indentation creep of hydrated soda-lime silicate glass determined by nanoindentation’, J. Am. Ceram. Soc., 1993, 76, (4), 1904–1912.
  • A. H. W. Ngan, J. B. Pethica and H. P. Ng: ’Strain-rate sensitivity of hardness of nanocrystalline Ni75at.%A125at.% alloy film’, J. Mater. Res., 2003, 18, (2), 382–386.
  • Y. I. Golovin, Y. L. Iunin and A. I. Tyurin: ’Strain-rate sensitivity of the hardness of crystalline materials under dynamic nanoinden-tation’, DokL Phys., 2003, 48, (9), 505–508.
  • N. Ur-Rehman, P. Brown and L. J. Vandeperre: ’Evolution of the AIN distribution during sintering of AIN doped SiC’, Proc. 34th Conf. on ’Advanced ceramics and composites’, Daytona Beach, FL, USA, January 2010, The American Ceramic Society.
  • W. C. Oliver and G. M. Pharr: ’An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments’, J. Mater. Res., 1992, 7, (6), 1564–1583.
  • I. N. Sneddon: ’Boussinesq’s problem for a rigid cone’, Proc. Cambridge Philos. Soc., 1948, 44, 492–507.
  • H. Landolt and R. Bornstein: ’Elektrische, Piezoelektrische, Pyroelektrische, Piezooptische, Elektrooptische Konstanten und Nichtlineare Dielektrische Suszeptibilitaten’; 1979, Berlin, Springer-Verlag.
  • D. Ray, R. M. Flinders, A. Anderson and R. A. Cutler: ’Effect of room-temperature hardness and toughness on the ballistic perfor-mance of SiC-based ceramics’, Ceram. Eng. Set Proc., 2006, 26, (7), 131–142.
  • M. Flinders, D. Ray, A. Anderson and R. A. Cutler: ’High-toughness silicon carbide as armour’, J. Am. Ceram. Soc., 2005, 88, (8), 2217–2226.
  • S. Fujita, K. Maeda and S. Hyodo: ’Dislocation glide motion in 6H SiC single crystals subjected to high-temperature deformation’, Philos. Mag. A, 1987, 55A, (2), 203–215.
  • P. Pirouz, J. L. Demenet and M. H. Hong: ’On transition temperatures in the plasticity and fracture of semiconductors’, Philos. Mag. A, 2001, 81A, (5), 1207–1227.
  • J. E. Pitchford: ’Effects of structure on mechanisms of high temperature plastic deformation in oxide ceramics’, PhD thesis, University of Cambridge, Cambridge, UK, 1999.
  • K. Ohsawa, H. Koizumi, H. O. K. Kirchner and T. Suzuki: ’The critical stress in a discrete Peierls—Nabarro model’, Philos. Mag. A, 1994, 69A, (1), 171–181.
  • R. Peierls: ’The size of a dislocation’, Proc. Phys. Soc., 1940, 52, 34–37.
  • W. J. Clegg, L. J. Vandeperre and J. E. Pitchford: ’Energy changes and the lattice resistance’, Key Eng. Mater., 2006, 317–318, 271–276.
  • H. Alexander and P. Haasen: ’Dislocations and plastic flow in the diamond structure’, Solid State Phys., 1968, 22, 27–158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.