Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 110, 2011 - Issue 5
771
Views
71
CrossRef citations to date
0
Altmetric
Review or critical assessment

Nanosize hydroxyapatite: doping with various ions

&
Pages 311-321 | Received 20 May 2010, Accepted 02 Oct 2010, Published online: 22 Nov 2013

References

  • Kalita SJ, Bhardwaj A, Bhatt HA: ‘Nanocrystalline calcium phosphate ceramics in biomedical engineering’, Mater. Sci. Eng. C, 2007, C27, 441–449.
  • Fang Y, Agrawal DK, Roy DM, Roy R: ‘Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering’, Mater. Lett., 1995, 23, 147–151.
  • Uematsu K, Takagi M, Honda T, Uchida N, Saito K: ‘Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake’, J. Am. Ceram. Soc., 1989, 72, 1476–1478.
  • Li J, Fartash B, Hermansson L: ‘Hydroxyapatite-alumina composites and bone-bonding’, Biomaterials, 1995, 16, 417–422.
  • Ioku K, Yoshimura M, Somiya S: ‘Microstructure and mechanical properties of hydroxyapatite ceramics with zirconia dispersion prepared by post-sintering’, Biomaterials, 1990, 11, 57–61.
  • de With G, van Dijk HJA, Hattu N, Prijs K: ‘Preparation, microstructure and mechanical properties of dense polycrystalline hydroxy apatite’, J. Mater. Sci., 1981, 16, 1592–1598.
  • Bhat SV: ‘Biomaterials’, 174–195; 2002, Norwell, MA, Kluwer Academic Publisher.
  • Marks SC, Hermey DC: ‘The structure and development of bone’, in ‘Principles of bone biology’, (ed. , Bilezikian J P, ed et al.), Vol. 3; , 3–14, 1996, San Diego, CA, Academic Press.
  • Park JB: ‘Biomaterials science and engineering’; 1987, New York, Plenum Press.
  • Keaveny TM, Hayes WC: ‘Mechanical properties of cortical and trabecular bone’, Bone, 1993, 7, 285–344.
  • Wang XM, Wang XL, Ma JF, Jiang JM, Zheng GQ, Chen ZH, Li XD: ‘Versatile nanostructured processing strategy for bone grafting nanocomposites based on collagen fibrillogenesis’, Adv. Appl. Ceram., 2009, 108, 384–388.
  • Handschin RG, Stern WB: ‘X-ray diffraction studies on the lattice perfection of human bone apatite (Crista Iliaca)’, Bone, 1995, 16, 355S–363S.
  • Wopenka B, Pasteris JD: ‘A mineralogical perspective on the apatite in bone’, Mater. Sci. Eng. C, 2005, C25, 131–143.
  • Legeros RZ: ‘Incorporation of magnesium in synthetic and biological apatites’, in ‘Tooth enamel IV’, (ed. , Fearnhead R W, Suga S, 32–36; 1984, Amsterdam, Elsevier.
  • Narasaraju TSB, Phebe DE: ‘Some physico-chemical aspects of hydroxylapatite’, J. Mater. Sci., 1996, 31, 1–21.
  • Holden JL, Clement JG, Phakey PP: ‘Age and temperature related changes to the ultrastructure and composition of human bone mineral’, J. Bone Miner. Res., 1995, 10, 1400–1409.
  • Rey C, Combes C, Drouet C, Sfihi H, Barroug A: ‘Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials’, Mater. Sci. Eng. C, 2007, C27, 198–205.
  • Clara M, Magalhaes F, Williams PA: ‘Apatite group minerals: solubility and environmental remediation’, in ‘Thermodynamics, solubility and environmental issues’, (ed. , Letcher T M, ed); , 327–340, 2007, Elsevier B.V.
  • Panteix PJ, Julien I, Abelard P, Bernache-Assollant D: ‘Influence of cationic vacancies on the ionic conductivity of oxyapatites’, J. Eur. Ceram. Soc., 2008, 28, 821–828.
  • Hoen CV, Rheinberger V, Holand W, Apel E: ‘Crystallization of oxyapatite in glass-ceramics’, J. Eur. Ceram. Soc., 2007, 27, 1579–1584.
  • Panteix PJ, Bechade E, Julien I, Abelard P, Bernache-Assolant D: ‘Influence of anionic vacancies on the ionic conductivity of silicated rare earth apatites’, Mater. Res. Bull., 2008, 43, 1223–1231.
  • Louis-Achille V, de Windt L, Defrancccschi M: ‘Local density calculation of structural properties and cohesive energy for ScPO4, YPO4 and the apatite Ca10(PO4)6F2’, J. Mol. Struct.: THEOCHEM, 1998, 426, 217–224.
  • Leon-Reina L, Porras-Vazquez JM, Losilla ER, Aranda MAG: ‘Interstitial oxide positions in oxygen-excess oxy-apatite’, Solid State Ion., 2006, 177, 1307–1315.
  • Wilson JWL, Werness PG, Smith LH: ‘Inhibitors of crystal growth of hydroxyapatite: A constant composition approach’, J. Urol., 1985, 134, 1255–1258.
  • Machoy-Mokrzynska A: ‘Fluoride-magnesium interaction’, Fluoride, 1995, 28, 175–177.
  • Astala R, Stott MJ: ‘First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite’, Chem. Mater., 2005, 17, 4125–4133.
  • Badraoui B, Aissa A, Bigi A, Debbabi M, Gazzano M: ‘Synthesis and characterization of Sr(10-x)Cdx(PO4)6Y2 (Y0 = 0OH and F): A comparison of apatites containing two divalent cations’, Mater. Res. Bull., 2009, 44, 522–530.
  • Zhu K, Yanagisawa K, Shimanouchi R, Onda A, Kajiyoshi K, Qiu J: ‘Synthesis and crystallographic study of Pb-Sr hydroxyapatite solid solutions by high temperature mixing method under hydrothermal conditions’, Mater. Res. Bull., 2009, 44, 1392–1396.
  • Peroos S, Du Z, de Leeuw NH: ‘A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxyapatite’, Biomaterials, 2006, 27, 2150–2161.
  • Tamm T, Peld M: ‘Computational study of cation substitutions in apatites’, J. Solid State Chem., 2006, 179, 1581–1587.
  • Sprio S, Tampieri A, Landi E, Sandri M, Martorana S, Celotti G, Logroscino G: ‘Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon’, Mater. Sci. Eng. C, 2008, C28, 179–187.
  • Kalita SJ, Bhatt HA: ‘Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization’, Mater. Sci. Eng. C, 2007, C27, 837–848.
  • Bigi A, Foresti E, Gregorini R, Ripamonti A, Roveri N, Shah JS: ‘The role of magnesium on the structure of biological apatite’, Calcif. Tissue Int., 1992, 50, 439–444.
  • TenHuisen KS, Brown PW: ‘Effects of magnesium on the formation of calcium deficient hydroxyapatite from CaHPO4·2H2O and Ca4(PO4)2O’, J. Biomed. Mater. Res., 1997, 36, 306–314.
  • Doremus RH: ‘Review bioceramics’, J. Mater. Sci., 1992, 27, 285–297.
  • Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB: ‘Osteoblast response to hydroxyapatite doped with divalent and trivalent cations’, Biomaterials., 2004, 25, 2111–2121.
  • Sutter B, Ming DW, Clearfield A, Hossner LR: ‘Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites’, Soil Sci. Soc. Am. J., 2003, 67, 1935–1942.
  • Fleet ME, Liu X, Pan Y: ‘Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2]’, J. Solid State Chem., 2000, 149, 391–398.
  • Evis Z: ‘Al+3 doped nano hydroxyapatites and their sintering characteristics’, J. Ceram. Soc. Jpn, 2006, 114, 1001–1004.
  • Ergun C, Webster TJ, Bizios R, Doremus RH: ‘Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure’, J. Biomed. Mater. Res., 2002, 59, 305–311.
  • Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH: ‘Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors’, Biomaterials, 2003, 24, 1389–1398.
  • Kannan S, Rebelo A, Ferreira JMF: ‘Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites’, J. Inorg. Biochem., 2006, 100, 1692–1697.
  • Gibson IR, Bonfield W: ‘Preparation and characterization of magnesium/ carbonate co-substituted hydroxyapatites’, J. Mater. Sci.: Mater. Med., 2002, 13, 685–693.
  • Xue W, Dahlquist K, Banerjee A, Bandyopadhyay A, Bose S: ‘Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants’, J. Mater. Sci.: Mater. Med., 2008, 19, 2669–2677.
  • Elliott JC, Mackie PE, Young RA: ‘Monoclinic hydroxyapatite’, Science, 1973, 180, 1055–1057.
  • Ahn ES, Gleason NJ, Nakahira A, Ying JY: ‘Nanostructure processing of hydroxyapatite-based bioceramics’, Nano Lett., 2001, 1, 149–153.
  • Bose S, Saha SK: ‘Synthesis of hydroxyl apatite nanopowders via sucrose-templated sol-gel method’, J. Am. Ceram. Soc., 2003, 86, 1055–1057.
  • Pramanik S, Agarwal AK, Rai KN, Garg A: ‘Development of high strength hydroxyapatite by solid-state-sintering process’, Ceram. Int., 2007, 33, 419–426.
  • Webster TJ, Ergun C, Doremus RH, Bizios R: ‘Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion’, J. Biomed. Mater. Res., 2002, 59, 312–317.
  • Manuell CM, Ferraz MP, Monteiro FJ: ‘Synthesis of hydroxyapatite and tricalcium phosphate nanoparticles - preliminary studies’, Key Eng. Mater., 2003, 240–242, 555–558.
  • Posner AS, Perloff A, Diorio AF: ‘Refinement of the hydroxyapatite structure’, Acta Crystallogr., 1958, 11, 308–309.
  • Kay MI, Young RA, Posner AS: ‘Crystal structure of hydroxyapatite’, Nature, 1964, 204, 1050–1052.
  • Park JB, Bronzino JD: ‘Biomaterials: principles and applications’; 2003, Boca Raton, FL, CRC Press.
  • Evis Z, Doremus RH: ‘Hot-pressed hydroxylapatite/monoclinic zirconia composites with improved mechanical properties’, J. Mater. Sci., 2007, 42, 2426–2431.
  • Cullity BD: ‘Elements of X-ray diffraction’, 2nd edn; 1978, Reading, MA, Addison-Wesley Publishing Company.
  • Ikoma T, Yamazaki A, Nakamura S, Akao M: ‘Preparation and structure refinement of monoclinic hydroxyapatite’, J. Solid State Chem., 1999, 144, 272–276.
  • Luo P, Nieh TG: ‘Synthesis of ultrafine hydroxyapatite particles by a spray dry method’, Mater. Sci. Eng. C, 1995, C3, 75–78.
  • Xu JL, Khor KA, Dong ZL, Gu YW, Kumar R, Cheang P: ‘Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma’, Mater. Sci. Eng. A, 2004, A374, 101–108.
  • Feng W, Mu-sen L, Yu-peng L, Yong-xin Q: ‘A simple sol-gel technique for preparing hydroxyapatite nanopowders’, Mater. Lett., 2005, 59, 916–919.
  • Fathi MH, Hanifi A: ‘Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method’, Mater. Lett., 2007, 61, 3978–3983.
  • Kim I.-S, Kumta PN: ‘Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder’, Mater. Sci. Eng. B, 2004, B111, 232–236.
  • Kuriakose TA, Kalkura SN, Palanichamy M, Arivuoli D, Dierks K, Bocelli G, Betzel C: ‘Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature’, J. Cryst. Growth, 2004, 263, 517–523.
  • Han YH, Li S, Wang X, Chen X: ‘Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method’, Mater. Res. Bull., 2004, 39, 25–32.
  • Rhee S.-H: ‘Synthesis of hydroxyapatite via mechanochemical treatment’, Biomaterials, 2002, 23, 1147–1152.
  • Shih W.-J, Chen Y.-F, Wang M.-C, Hon M.-H: ‘Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method’, J. Cryst. Growth, 2004, 270, 211–218.
  • Sarig S, Kahana F: ‘Rapid formation of nanocrystalline apatite’, J. Cryst. Growth, 2002, 237–239, 55–59.
  • Li X, Koller G, Huang J, Silvio LD, Renton T, Esat M, Bonfield W, Edirisinghe M: ‘A novel jet-based nano-hydroxyapatite patterning technique for osteoblast guidance’, J. R. Soc. Interface, 2010, 7, 189–197.
  • Lim GK, Wang J, Ng SC, Chew CH, Gan LM: ‘Processing of hydroxyapatite via microemulsion and emulsion routes’, Biomaterials, 1997, 18, 1433–1439.
  • Evis Z: ‘Reactions in hydroxylapatite-zirconia composites’, Ceram. Int., 2007, 33, 987–991.
  • Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH: ‘Hydroxylapatite synthesis and characterization in dense polycrystalline form’, J. Mater. Sci., 1976, 11, 2027–2035.
  • Mobasherpour I, Heshajin MS, Kazemzadeh A, Zakeri M: ‘Synthesis of nanocrystalline hydroxyapatite by using precipitation method’, J. Alloys Compd, 2007, 430, 330–333.
  • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: ‘Enhanced osteoclast-like cell functions on nanophase ceramics’, Biomaterials, 2001, 22, 1327–1333.
  • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: ‘Enhanced functions of osteoblasts on nanophase ceramics’, Biomaterials, 2000, 21, 1803–1810.
  • Ruys AJ, Wei M, Sorrell CC, Dickson MR, Brandwood A, Milthorpe BK: ‘Sintering effects on the strength of hydroxyapatite’, Biomaterials, 1995, 16, 409–415.
  • Akao M, Aoki H, Kato K: ‘Mechanical properties of sintered hydroxyapatite for prosthetic applications’, J. Mater. Sci., 1981, 16, 809–812.
  • Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP: ‘Biphasic calcium phosphate bioceramics: preparation, properties and applications’, J. Mater. Sci.: Mater. Med., 2003, 14, 201–209.
  • Best SM, Porter AE, Thian ES, Huang J: ‘Bioceramics: Past, present and for the future’, J. Eur. Ceram. Soc., 2008, 28, 1319–1327.
  • Webster TJ, Siegel RW, Bizios R: in ‘Bioceramics’, (ed. , LeGeros R Z, LeGeros J P, ed), 273–276; 1998, New York, World Scientific.
  • Webster TJ, Siegel RW, Bizios R: ‘Osteoblast adhesion on nanophase ceramics’, Biomaterials, 1999, 20, 1221–1227.
  • Webster TJ: Unpublished results.
  • Li P: ‘Biomimetic nano-apatite coating capable of promoting bone ingrowth’, J. Biomed. Mater. Res., 2003, 66, 79–85.
  • Chen Y, Miao X: ‘Effect of fluorine addition on the corrosion resistance of hydroxyapatite ceramics’, Ceram. Int., 2004, 30, 1961–1965.
  • Sugiyama K, Tokonami M: ‘Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO)4: a host to accommodate large lithophile elements in the earth’s mantle’, Phys. Chem. Miner., 1987, 15, 125–130.
  • Famery R, Richard N, Boch P: Ceram. Int., 1994, 20, ‘Preparation of α- and β-tricalcium phosphate ceramics, with and without magnesium addition’, 327–336.
  • Schroeder LW, Mathew M: ‘Cation ordering in Ca2La8(SiO4)6O2’, J. Solid State Chem., 1978, 26, 383–387.
  • Mathew M, Brown WE, Austin M, Negas T: ‘Lead alkali apatites without hexad anion: The crystal structure of Pb8K2(PO4)6’, J. Solid State Chem., 1980, 35, 69–76.
  • Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N: ‘Magnesium influence on hydroxyapatite crystallization’, J. Inorg. Biochem., 1993, 49, 69–78.
  • He L.-H, Standard OC, Huang TTY, Latella BA, Svain MV: ‘Mechanical behavior of porous hydroxyapatite’, Acta Biomater., 2008, 4, 577–586.
  • Nalla RK, Kinney JH, Ritchie RO: ‘Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms’, Biomaterials, 2003, 24, 3955–3968.
  • Kannan S, Ferreira JMF: ‘Synthesis and thermal stability of hydroxyapatite-β-tricalcium phosphate composites with cosubstituted sodium, magnesium, and fluorine’, Chem. Mater., 2006, 18, 198–203.
  • Koutsoukos PG, Nancollas GH: ‘The effect of lithium on the crystallization of hydroxyapatite from aqueous solution’, Colloids Surf., 1986, 17, 361–370.
  • Yu D, Wong J, Matsuda Y, Fox JL, Higuchi WI, Otsuka M: ‘Self-setting hydroxyapatite cement: a novel skeletal drug-delivery system for antibiotics’, J. Pharm. Sci., 1992, 81, 529–534.
  • Gross KA, Rodriguez-Lorenzo LM: ‘Sintered hydroxyfluorapatites. Part II: mechanical properties of solid solutions determined by microindentation’, Biomaterials, 2004, 25, 1385–1394.
  • Liu HS, Chin TS, Lai LS, Chiu SY, Chung KH, Chang CS, Lui MT: ‘Hydroxyapatite synthesized by a simplified hydrothermal method’, Ceram. Int., 1997, 23, 19–25.
  • Bezzi G, Celotti G, Landi E, La Torretta TMG, Sopyan I, Tampieri A: ‘A novel sol-gel technique for hydroxyapatite preparation’, Mater. Chem. Phys., 2003, 78, 816–824.
  • Kannan S, Ventura JM, Ferreira JMF: Ceram. Int., 2007, 33, ‘Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: an x-ray diffraction study’, 637–641.
  • Evis Z, Doremus RH: ‘Effect of MgF2 on hot pressed hydroxylapatite and monoclinic zirconia composites’, J. Mater. Sci., 2007, 42, 3739–3744.
  • Eslami H, Solati-Hashjin M, Tahriri M: ‘The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite’, Mater. Sci. Eng. C, 2009, C29, 1387–1398.
  • Qu H, Wei M: ‘The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior’, Acta Biomater., 2006, 2, 113–119.
  • Fathi MH, Zahrani EM: ‘Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite’, J. Cryst. Growth, 2009, 311, 1392–1403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.