Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 110, 2011 - Issue 5
1,813
Views
87
CrossRef citations to date
0
Altmetric
DAVIDGE AWARD 2010 REVIEW

PTCR effect in donor doped barium titanate: review of compositions, microstructures, processing and properties

&
Pages 257-269 | Received 23 Oct 2010, Accepted 15 Jan 2011, Published online: 22 Nov 2013

References

  • Wang DY, Umeya K: ‘Electrical properties of PTCR barium titanate’, J. Am. Ceram. Soc., 1990, 73, (3), 669–677.
  • Qi J, Gui Z, Wang Y, Zhu Q, Wu Y, Li L: ‘The PTCR effect in BaTiO3 ceramics modified by donor dopant’, Ceram. Int., 2002, 28, (2), 141–143.
  • Liang CK, Tsai CC: ‘Evaluation of a novel PTC thermistor for telecom overcurrent protection’, Sens. Actuator A: Phys., 2005, 121, (2), 443–449.
  • Jayanthi S, Kutty TRN: ‘Effect of segregative additives on the positive temperature coefficient in resistance characteristics of n-BaTiO3 ceramics’, J. Mater. Sci. Mater. Electron., 2006, 17, (11), 883–897.
  • Shimada T, Touji K, Katsuyama Y, Takeda H, Shiosaki T: ‘Lead free PTCR ceramics and its electrical properties’, J. Eur. Ceram. Soc., 2007, 27, (13–15), 3877–3882.
  • Huybrechts B, Ishizaki K, Takata M: ‘The positive temperature-coefficient of resistivity in barium titanate’, J. Mater. Sci., 1995, 30, (10), 2463–2474.
  • Nowotny J, Rekas M: ‘Positive temperature-coefficient of resistivity for BaTiO3-based materials’, Ceram. Int., 1991, 17, (4), 227–241.
  • Brzozowski E, Castro MS: ‘Conduction mechanism of barium titanate ceramics’, Ceram. Int., 2000, 26, (3), 265–269.
  • Saburi O: ‘Semiconducting bodies in the family of barium titanates’, J. Am. Ceram. Soc., 1961, 44, (2), 54–63.
  • Ota T, Yamai I: ‘Positive-temperature-coefficient effect in graphite cristobalite composites’, J. Am. Ceram. Soc., 1992, 75, (7), 1772–1776.
  • Lisjak D, Drofenik M, Kolar D: ‘Composite ceramics with a positive temperature coefficient of electrical resistivity effect’, J. Mater. Res., 2000, 15, (2), 417–428.
  • Hirano S, Kishimoto A: ‘Effect of heating rate on positive-temperature-coefficient-of-resistivity behaviour of conductive composite thin films’, Appl. Phys. Lett., 1998, 73, (25), 3742–3744.
  • Bhadrakumari S, Predeep P: ‘YBa2Cu3O7-x/Thermoplastic polymer composite thermistors’, Eur. Polym. J., 2009, 45, (1), 226–229.
  • Hendrix BC, Wang X, Chen W, Cui WQ: ‘Understanding doped V2O3 as a functional positive temperature-coefficient material’, J. Mater. Sci. Mater. Electron., 1992, 3, (2), 113–119.
  • Kokabi HR, Rapeaux M, Aymami JA, Desgardin G: ‘Electrical characterization of PTC thermistor based on chromium doped vanadium sesquioxide’, Mater. Sci. Eng. B, 1996, B38, (1–2), 80–89.
  • Moulson AJ, Herbert JM: ‘Electroceramics: materials, properties, applications’, 2nd edn, 167–173; 2003, Chichester, John Wiley & Sons, Ltd.
  • Kulwicki BM: in ‘Advances in ceramics’, (ed. , Levinson L M, Hill D C), 138–139; 1981, Colombus, OH, American Ceramic Society.
  • Xue LA, Chen Y, Brook RJ: ‘The influence of ionic-radii on the incorporation of trivalent dopants into BaTiO3’, Mater. Sci. Eng. B: Solid State Mater., 1988, 1, (2), 193–201.
  • Jung YS, Na ES, Paik U, Lee J, Kim J: ‘A study on the phase transition and characteristics of rare earth elements doped BaTiO3’, Mater. Res. Bull., 2002, 37, (9), 1633–1640.
  • Glinchuk MD, Bykov IP, Kornienko SM, Laguta VV, Slipenyuk AM, Bilous AG, V’Yunov OI, Yanchevskii OZ: ‘Influence of impurities on the properties of rare-earth-doped barium-titanate ceramics’, J. Mater. Chem., 2000, 10, (4), 941–947.
  • Saburi O: ‘Properties of semiconductive barium titanates’, J. Phys. Soc. Jpn, 1959, 14, 1159–1174.
  • Heywang W: ‘Resistivity anomaly in doped barium titanate’, J. Am. Ceram. Soc., 1964, 47, (10), 484–490.
  • Peria WT, Bratschun WR, Fenity RD: ‘Possible explanation of positive temperature coefficient in resistivity of semiconducting ferroelectrics’, J. Am. Ceram. Soc., 1961, 44, (5), 249–250.
  • Jonker GH: ‘Some aspects of semiconducting barium titanate’, Solid State Electron., 1964, 7, (12), 895–903.
  • Megaw HD: ‘Crystal structure of barium titanium oxide and other double oxides of perovskite type’, Trans. Faraday Soc. A, 1946, 42A, 224–231.
  • Saburi O, Wakino K: ‘Processing techniques and applications of positive temperature coefficient thermistors’, IEEE Trans. Compon. Parts, 1963, 10, (2), 53–67.
  • Daniels J, Hardtl KH, Wernicke R: ‘PTC effect of barium titanate’, Philips Tech. Rev., 1979, 38, (3), 73–82.
  • Hozer L: ‘Semiconductor ceramics: grain boundary effects’, 109–141; 1994, London, Ellis Horwood.
  • Goodman G: ‘Electrical conduction anomaly in samarium doped barium titanate’, J. Am. Ceram. Soc., 1963, 46, (1), 48–54.
  • Sinclair DC, West AR: ‘Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature-coefficient of resistance’, J. Appl. Phys., 1989, 66, (8), 3850–3856.
  • Alallak HM, Brinkman AW, Russell GJ, Roberts AW, Woods J: ‘The effect of donor dopant concentration on the room temperature resistivity of BaTiO3 ceramics with positive temperature coefficients of resistance’, J. Phys. D: Appl. Phys., 1988, 21, (7), 1226–1233.
  • Preis W, Burgermeister A, Sitte W, Supancic P: ‘Bulk and grain boundary resistivities of donor-doped barium titanate ceramics’, Solid State Ion., 2004, 173, (1–4), 69–75.
  • Huybrechts B, Ishizaki K, Takata M: ‘Experimental evaluation of the acceptor-states compensation in positive-temperature-coefficient-type barium titanate’, J. Am. Ceram. Soc., 1992, 75, (3), 722–724.
  • Zubair MA, Leach C: ‘Modeling the resistance-temperature characteristic of a positive temperature coefficient thermistor, using experimentally determined permittivity data’, Appl. Phys. Lett., 2007, 91, (8), 082105.
  • Miki T, Fujimoto A, Jida S: ‘An evidence of trap activation for positive temperature coefficient of resistivity in BaTiO3 ceramics with substitutional Nb and Mn as impurities’, J. Appl. Phys., 1998, 83, (3), 1592–1603.
  • Alles AB, Amarakoon VRW, Burdick VL: ‘Positive temperature-coefficient of resistivity effect in undoped, atmospherically reduced barium titanate’, J. Am. Ceram. Soc., 1989, 72, (1), 148–151.
  • Jiang S, Zhou D, Gong S, Guan X: ‘Effect of heat-treatment under oxygen atmosphere on the electrical properties of BaTiO3 thermistor’, Microelectron. Eng., 2003, 66, (1–4), 896–903.
  • Hideaki N, Kenjiro M, Yukio S, Makoto K: ‘Influence of Ba/Ti ratio on the positive temperature coefficient of resistivity characteristics of Ca-doped semiconducting BaTiO3 fired in reducing atmosphere and reoxidized in air’, J. Am. Ceram. Soc., 2007, 90, (6), 1817–1821.
  • Daniels J, Hardtl KH, Hennings D, Wernicke R: ‘Defect chemistry and electrical-conductivity of doped barium titanate ceramics’, Philips Res. Rep., 1976, 31, (6), 487–488.
  • Jonker GH, Havinga EE: ‘The influence of foreign ions on the crystal lattice of barium titanate’, Mater. Res. Bull., 1982, 17, (3), 345–350.
  • Chan HM, Harmer MP, Smyth DM: ‘Compensating defects in highly donor-doped BaTiO3’, J. Am. Ceram. Soc., 1986, 69, (6), 507–510.
  • Buscaglia MT, Buscaglia V, Viviani M, Nanni P: ‘Atomistic simulation of dopant incorporation in barium titanate’, J. Am. Ceram. Soc., 2001, 84, (2), 376–384.
  • Smyth DM: ‘The defect chemistry of donor-doped BaTiO3: a rebuttal’, J. Electroceram., 2002, 9, (3), 179–186.
  • Langhammer HT, Drofenik M, Felgner KH, Abicht HP: ‘Investigation of semiconducting barium titanate ceramics by oxygen coulometry’, J. Electroceram., 2004, 13, (1–3), 793–797.
  • Langhammer HT, Song QM, Felgner KH, Abicht HP: ‘Investigations on the defect chemistry and the sintering of barium titanate ceramics by oxygen coulometry’, Solid State Sci., 2002, 4, (2), 197–203.
  • Makovec D, Drofenik M: ‘Microstructural changes during the reduction/reoxidation process in donor-doped BaTiO3 ceramics’, J. Am. Ceram. Soc., 2000, 83, (10), 2593–2599.
  • V’Yunov OI, Kovalenko LL, Belous AG, Belyakov VN: ‘Oxidation of reduced Y-doped semiconducting barium titanate ceramics’, Inorg. Mater., 2005, 41, (1), 87–93.
  • Morrison FD, Coats AM, Sinclair DC, West AR: ‘Charge compensation mechanisms in La-doped BaTiO3’, J. Electroceram., 2001, 6, (3), 219–232.
  • Morrison FD, Sinclair DC, West AR: ‘Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics’, Int. J. Inorg. Mater., 2001, 3, (8), 1205–1210.
  • Morrison FD, Sinclair DC, West AR: ‘An alternative explanation for the origin of the resistivity anomaly in La-doped BaTiO3’, J. Am. Ceram. Soc., 2001, 84, (2), 474–476.
  • Beltran H, Cordoncillo E, Escribano P, Sinclair DC, West AR: ‘Oxygen loss, semiconductivity, and positive temperature coefficient of resistance behavior in undoped cation-stoichiometric BaTiO3 ceramics’, J. Appl. Phys., 2005, 98, (9), 094102.
  • Hayes W, Stoneham AM: ‘Defects and defect processes in nonmetallic solids’; 1985, London, John Wiley & Sons, Inc.
  • Zubair MA, Leach C: ‘The effect of SiO2 addition on the development of low-Σ grain boundaries in PTC thermistors’, J. Eur. Ceram. Soc., 2010, 30, (1), 107–112.
  • Makovec D, Ule N, Drofenik M: ‘Positive temperature coefficient of resistivity effect in highly donor-doped barium titanate’, J. Am. Ceram. Soc., 2001, 84, (6), 1273–1280.
  • Morrison FD, Sinclair DC, West AR: ‘Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy’, J. Am. Ceram. Soc., 2001, 84, (3), 531–538.
  • Affleck L, Seaton J, Leach C: ‘Characterisation of the R-T response of BaTiO3 thermistors on three different length scales’, J. Eur. Ceram. Soc., 2007, 27, (12), 3439–3444.
  • Fiorenza P, Lo Nigro R, Delugas P, Raineri V, Mould AG, Sinclair DC: ‘Direct imaging of the core-shell effect in positive temperature coefficient of resistance-BaTiO3 ceramics’, Appl. Phys. Lett., 2009, 95, (14), 142904.
  • Makovec D, Samardzija Z, Drofenik M: ‘Solid solubility of holmium, yttrium, and dysprosium in BaTiO3’, J. Am. Ceram. Soc., 2004, 87, (7), 1324–1329.
  • Ueoka H: ‘Doping effects of transition-elements on PTC anomaly of semiconductive ferroelectric ceramics’, Ferroelectrics, 1974, 7, (1–4), 351–353.
  • Murakami T, Miyashita T, Nakahara M, Sekine E: ‘Effect of rare-earth ions on electrical conductivity of BaTiO3 ceramics’, J. Am. Ceram. Soc., 1973, 56, (6), 294–297.
  • Tennery VJ, Cook RL: ‘Investigation of rare-earth doped barium titanate’, J. Am. Ceram. Soc., 1961, 44, (4), 187–193.
  • Tsur Y, Dunbar TD, Randall CA: ‘Crystal and defect chemistry of rare earth cations in BaTiO3’, J. Electroceram., 2001, 7, (1), 25–34.
  • Dunbar TD, Warren WL, Tuttle BA, Randall CA, Tsur Y: ‘Electron paramagnetic resonance investigations of lanthanide-doped barium titanate: dopant site occupancy’, J. Phys. Chem. B, 2004, 108B, (3), 908–917.
  • Zhi J, Chen A, Zhi Y, Vilarinho PM, Baptista JL: ‘Incorporation of yttrium in barium titanate ceramics’, J. Am. Ceram. Soc., 1999, 82, (5), 1345–1348.
  • Makovec D, Samardzija Z, Drofenik M: ‘The solid solubility of holmium in BaTiO3 under reducing conditions’, J. Am. Ceram. Soc., 2006, 89, (10), 3281–3284.
  • Desu SB, Payne DA: ‘Interfacial segregation in perovskites: 2. experimental evidence’, J. Am. Ceram. Soc., 1990, 73, (11), 3398–3406.
  • Desu SB, Payne DA: ‘Interfacial segregation in perovskites: 4. internal boundary layer devices’, J. Am. Ceram. Soc., 1990, 73, (11), 3416–3421.
  • Desu SB, Payne DA: ‘Interfacial segregation in perovskites: 3. microstructure and electrical properties’, J. Am. Ceram. Soc., 1990, 73, (11), 3407–3415.
  • Peng CJ, Lu HY: ‘Compensation effect in semiconducting barium titanate’, J. Am. Ceram. Soc., 1988, 71, (1), C44–C46.
  • Ting CJ, Peng CJ, Lu HY, Wu ST: ‘Lanthanum-magnesium and lanthanum-manganese donor-acceptor-codoped semiconducting barium titanate’, J. Am. Ceram. Soc., 1990, 73, (2), 329–334.
  • Yoon SH, Lee KH, Kim H: ‘Effect of acceptors on the segregation of donors in niobium-doped barium titanate positive temperature coefficient resistors’, J. Am. Ceram. Soc., 2000, 83, (10), 2463–2472.
  • Seaton J, Leach C: ‘Local property measurement in PTC thermistors’, Acta Mater., 2003, 51, (20), 6027–6034.
  • Wang P.-J, Zeng Z.-Q, Gui Z.-L, Li L.-T: ‘Strontium-lead titanate ceramics with positive temperature coefficient of resistance’, Mater. Lett., 1997, 30, (4), 275–277.
  • Zhao J, Li L, Gui Z: ‘A study of V-shaped PTC behaviour of Sr0.4Pb0.6TiO3 ceramics’, J. Eur. Ceram. Soc., 2002, 22, (7), 1171–1175.
  • Zhao J, Li L, Gui Z: ‘Influence of lithium modification on the properties of Y-doped Sr0.5Pb0.5TiO3 thermistors’, Sens. Actuators A, 2001, 95A, (1), 46–50.
  • Chou C, Chang H, Lin I, Shaw B: ‘Microscopic examination of the microwave sintered (Pb0.6Sr0.4)TiO3 positive-temperature-coefficient resistor materials’, Jpn J. Appl. Phys., 1998, 37, 5269–5272.
  • Völtzke D, Abicht HP, Pippel E, Woltersdorf J: ‘Ca-containing additives in PTC-BaTiO3 ceramics: effects on the microstructural evolution’, J. Eur. Ceram. Soc., 2000, 20, (11), 1663–1669.
  • Anwar S, Sagdeo PR, Lalla NP: ‘Ferroelectric relaxor behavior in hafnium doped barium-titanate ceramic’, Solid State Commun., 2006, 138, (7), 331–336.
  • Kumar M, Garg A, Kumar R, Bhatnagar MC: ‘Structural, dielectric and ferroelectric study of Ba0.9Sr0.1ZrxTi1−xO3 ceramics prepared by the sol-gel method’, Physica B, 2008, 403B, (10–11), 1819–1823.
  • Lu SG, Xu ZK, Chen H: ‘Tunability and relaxor properties of ferroelectric barium stannate titanate ceramics’, Appl. Phys. Lett., 2004, 85, (22), 5319–5321.
  • Yu Z, Ang C, Guo RY, Bhalla AS: ‘Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics’, J. Appl. Phys., 2002, 92, (5), 2655–2657.
  • Shvartsman VV, Kleemann W, Dec J, Xu ZK, Lu SG: ‘Diffuse phase transition in BaTi1−xSnxO3 ceramics: An intermediate state between ferroelectric and relaxor behavior’, J. Appl. Phys., 2006, 99, (12), 124111.
  • Chan NH, Smyth DM: ‘Defect chemistry of donor-doped BaTiO3’, J. Am. Ceram. Soc., 1984, 67, (4), 285–288.
  • Selmi FA, Amarakoon VRW: ‘Sol-gel coating of powders for processing electronic ceramics’, J. Am. Ceram. Soc., 1988, 71, (11), 934–937.
  • Viviani M, Nanni P, Buscaglia MT, Leoni M, Buscaglia V, Centurioni L: ‘Impedance spectroscopy of n-doped (Ba,Sr)TiO3 ceramics prepared by modified low temperature aqueous synthesis’, J. Eur. Ceram. Soc., 1999, 19, (6–7), 781–785.
  • Yaseen H, Baltianski S, Tsur Y: ‘Effect of incorporating method of niobium on the properties of doped barium titanate ceramics’, J. Am. Ceram. Soc., 2006, 89, (5), 1584–1589.
  • Cui B, Yu P, Tian J, Guo H, Chang Z: ‘Preparation and characterization of niobium-doped barium titanate nanocrystalline powders and ceramics’, Mater. Sci. Eng. A, 2007, A454–A455, 667–672.
  • Shut VN, Kostomarov SV, Gavrilov AV: ‘PTCR ceramics produced from oxalate-derived barium titanate’, Inorg. Mater., 2008, 44, (8), 905–910.
  • Brzozowski E, Caballero AC, Villegas M, Castro MS, Fernandez JF: ‘Effect of doping method on microstructural and defect profile of Sb-BaTiO3’, J. Eur. Ceram. Soc., 2006, 26, (12), 2327–2336.
  • Mukherjee N, Roseman RD, Zhang Q: ‘Sintering behavior and PTCR properties of stoichiometric blend BaTiO3’, J. Phys. Chem. Solids, 2002, 63, (4), 631–638.
  • Park BK, Lee JH, Kim DY, Hwang NM: ‘Positive temperature coefficient of resistance effect in heavily niobium-doped barium titanate by the growth of the double-twinned seeds’, J. Am. Ceram. Soc., 2001, 84, (11), 2707–2709.
  • Qi J, Gui Z, Wu Y, Li L: ‘Positive temperature coefficient resistance effect in Ba1−xSrxTiO3 ceramics modified with Bi2O3 and PbO by vapour doping method’, J. Mater. Res., 1999, 14, (8), 3328–3329.
  • Chatterjee S, Maiti HS: ‘A novel method of doping PTC thermistor sensor elements during sintering through diffusion by vapour phase’, Mater. Chem. Phys., 2001, 67, (1–3), 294–297.
  • Qi J, Gui Z, Zhu Q, Wang Y, Wu Y, Li L: ‘Doping behavior of CdO in BaTiO3-based PTCR ceramics’, Sens. Actuators A, 2002, 100A, (2–3), 244–246.
  • Qi J, Gui Z, Wu Y, Li L: ‘Influence of manganese on PTCR effect in BaTiO3-based ceramics doped with Bi2O3 vapour’, Mater. Chem. Phys., 2002, 73, (1), 97–100.
  • Syrtsov SR, Shut VN, Kashevich IF: ‘Positive temperature coefficient of resistivity in thin films of barium titanate’, Mater. Sci. Semicond. Process., 2003, 5, 223–225.
  • Yan L, Lu HB, Chen ZH, Dai SY, Zhou YL, Yang GZ: ‘Characteristics of BaNbxTi1−xO3 thin films grown by laser molecular beam epitaxy’, J. Cryst. Growth, 2002, 244, (3–4), 225–228.
  • Lemee N, Dubourdieu C, Delabouglise G, Senateur JP, Laroudie F: ‘Semiconductive Nb-doped BaTiO3 films grown by pulsed injection metalorganic chemical vapor deposition’, J. Cryst. Growth, 2002, 235, (1–4), 347–351.
  • Nagano D, Funakubo H, Shinozaki K, Mizutani N: ‘Electrical properties of semiconductive Nb-doped BaTiO3 thin films prepared by metal-organic chemical-vapor deposition’, Appl. Phys. Lett., 1998, 72, (16), 2017–2019.
  • Shao Y, Hughes RA, Dabkowski A, Radtke G, Gong WH, Preston JS, Botton GA: ‘Structural and transport properties of epitaxial niobium-doped BaTiO3 films’, Appl. Phys. Lett., 2008, 93, (19), 3.
  • Arveux E, Payan S, Maglione M, Klein A: ‘Surface segregation in Nb-doped BaTiO3 films’, Appl. Surf. Sci., 2010, 256, (21), 6228–6232.
  • Chatterjee S, Sengupta K, Maiti HS: ‘A miniature PTC thermistor based sensor element fabricated by tape casting technique’, Sens. Actuators B, 1999, 60B, (2–3), 155–160.
  • Zhou D, Zheng Z, Gong S, Huang G, Hu Y: ‘The influence of shaping process on microstructure and properties of BaTiO3-based chip thermistors’, Ceram. Int., 2006, 32, (7), 839–842.
  • Sauer HA, Fisher JR: ‘Processing of positive temperature coefficient thermistors’, J. Am. Ceram. Soc., 1960, 43, (6), 297–301.
  • MacChesney JB, Potter JF: ‘Factors and Mechanisms Affecting the Positive Temperature Coefficient of Resistivity of Barium Titanate’, J. Am. Ceram. Soc., 1965, 48, (2), 81–88.
  • LaCourse BC, Amarakoon VRW: ‘Characterization of the firing schedule for positive temperature coefficient of resistance BaTiO3’, J. Am. Ceram. Soc., 1995, 78, (12), 3352–3356.
  • Sinclair DC, West AR: ‘Effect of atmosphere on the PTCR properties of BaTiO3 ceramics’, J. Mater. Sci., 1994, 29, (23), 6061–6068.
  • Ozawa M, Suzuki S: ‘Influence of heat treatment with nitrogen in positive-temperature-coefficient-type BaTiO3’, J. Mater. Sci. Lett., 1997, 16, (7), 545–546.
  • Kuwabara M, Matsuda H, Kurata N, Matsuyama E: ‘Shift of the curie point of barium titanate ceramics with sintering temperature’, J. Am. Ceram. Soc., 1997, 80, (10), 2590–2596.
  • Basu RN, Maiti HS: ‘Effect of sintering time on the resistivity of semiconducting BaTiO3 ceramics’, Mater. Lett., 1987, 5, (3), 99–102.
  • Kahn M: ‘Effect of heat-treatment on PTCR anomaly in semiconductinig barium titanate’, Am. Ceram. Soc. Bull., 1971, 50, (8), 676–677.
  • Zubair MA, Leach C: ‘The influence of cooling rate and SiO2 additions on the grain boundary structure of Mn-doped PTC thermistors’, J. Eur. Ceram. Soc., 2008, 28, (9), 1845–1855.
  • Zubair MA, Leach C: ‘Modeling the effect of SiO2 additions and cooling rate on the electrical behavior of donor-acceptor codoped positive temperature coefficient thermistors’, J. Appl. Phys., 2008, 103, (12), 123713.
  • Bomlai P, Sirikulrat N, Tunkasiri T: ‘Effect of heating rate on the properties of Sb and Mn-doped barium strontium titanate PTCR ceramics’, Mater. Lett., 2005, 59, (1), 118–122.
  • Liu GS, Roseman RD: ‘Secondary thermal treatment effect on PTCR BaTiO3’, J. Mater. Sci. Lett., 1999, 18, (22), 1875–1878.
  • Jida S, Suemasu T, Miki T: ‘Effect of microwave heating on BaTiO3: Nb ceramics with positive temperature coefficient of resistivity’, J. Appl. Phys., 1999, 86, (4), 2089–2094.
  • Lin T.-F, Hu C.-T, Lin IN: ‘Influence of stoichiometry on the microstructure and positive temperature coefficient of resistivity of semiconducting barium titanate ceramics’, J. Am. Ceram. Soc., 1990, 73, (3), 531–536.
  • Knauth P: ‘Ionic and electronic conduction in nanostructured solids: concepts and concerns, consensus and controversies’, Solid State Ion., 2006, 177, 2495–2502.
  • Begg BD, Vance ER, Nowotny J: ‘Effect of particle size on the room-temperature crystal structure of barium titanate’, J. Am. Ceram. Soc., 1994, 77, (12), 3186–3192.
  • Yashima M, Hoshina T, Ishimura D, Kobayashi S, Nakamura W, Tsurumi T, Wada S: ‘Size effect on the crystal structure of barium titanate nanoparticles’, J. Appl. Phys., 2005, 98, (1), 014313.
  • Park MB, Cho NH, Kim CD, Lee SK: ‘Phase transition and physical characteristics of nanograined BaTiO3 ceramics synthesized from surface-coated nanopowders’, J. Am. Ceram. Soc., 2004, 87, (3), 510–512.
  • Hwang CS, Lee BT, Cho HJ, Lee KH, Kang CS, Hideki H, Lee SI, Lee MY: ‘A positive temperature coefficient of resistivity effect from a paraelectric Pt/(Ba0.5,Sr0.5)TiO3/IrO2 thin-film capacitor’, Appl. Phys. Lett., 1997, 71, (3), 371–373.
  • Qin WF, Zhu J, Xiong J, Tang JL, Jie WJ, Wei XH, Zhang Y, Li YR: ‘Electrical behavior of Y-doped Ba0.6Sr0.4TiO3 thin films’, J. Mater. Sci. Mater. Electron., 2007, 18, (12), 1217–1220.
  • Okano M, Watanabe Y, Cheong SW: ‘Nonlinear positive temperature coefficient of resistance of BaTiO3 film’, Appl. Phys. Lett., 2003, 82, (12), 1923–1925.
  • Kuwabara M: ‘Effect of microstructure on the PTCR effect in semiconducting barium titanate ceramics’, J. Am. Ceram. Soc., 1981, 64, (11), 639–644.
  • Roseman RD, Mukherjee N: ‘PTCR effect in BaTiO3: structural aspects and grain boundary potentials’, J. Electroceram., 2003, 10, (2), 117–135.
  • Zhang DL, Zhou DX, Jiang SL, Wang X, Gong SP: ‘Effects of porosity on the electrical characteristics of current-limiting BaTiO3-based positive-temperature-coefficient (PTC) ceramic thermistors coated with electroless nickel-phosphorous electrode’, Sens. Actuator A: Phys., 2004, 112, (1), 94–100.
  • Kim J.-G: ‘Synthesis of porous (Ba,Sr)TiO3 ceramics and PTCR characteristics’, Mater. Chem. Phys., 2002, 78, (1), 154–159.
  • Hasegawa A, Fujitsu S, Koumoto K, Yanagida H: ‘The enhanced penetration of oxygen along the grain-boundary in semiconducting barium titanate’, Jpn J. Appl. Phys., 1991, 30, (6), 1252–1255.
  • Liu GS, Roseman RD: ‘Effect of BaO and SiO2 addition on PTCR BaTiO3 ceramics’, J. Mater. Sci., 1999, 34, (18), 4439–4445.
  • Drofenik M, Makovec D, Zajc I, Langhammer HT: ‘Anomalous grain growth in donor-doped barium titanate with excess barium oxide’, J. Am. Ceram. Soc., 2002, 85, (3), 653–660.
  • He Z, Ma J, Qu Y, Feng X: ‘Effect of additives on the electrical properties of a (Ba0.92Sr0.08)TiO3-based positive temperature coefficient resistor’, J. Eur. Ceram. Soc., 2002, 22, (13), 2143–2148.
  • He ZM, Ma J, Qu YF, Wang CG: ‘Compositional and processing effects on electrical properties of (Ba0.85Pb0.15)TiO3-based positive temperature coefficient resistors’, J. Eur. Ceram. Soc., 2004, 24, (14), 3617–3622.
  • Mimi H, Mihara K, Sakabe Y, Kuwabara M: ‘Preparation of multilayer semiconducting BaTiO3 ceramics co-fired with Ni inner electrodes’, Jpn J. Appl. Phys. Part 1: Regul. Pap. Brief Commun. Rev. Pap., 2007, 46, (10A), 6715–6718.
  • Kanda A, Tashiro S, Igarashi H: ‘Effect of firing atmosphere on electrical properties of multilayer semiconducting ceramics having positive temperature coefficient of resistivity and Ni–Pd internal electrodes’, Jpn J. Appl. Phys., 1994, 33, 5431–5434.
  • Takeda H, Aoto W, Shiosaki T: ‘BaTiO3-(Bi1/2Na1/2)TiO3 solid-solution semiconducting ceramics with Tc>130°C’, Appl. Phys. Lett., 2005, 87, (10), 102104.
  • Chu BJ, Chen DR, Li GR, Yin QR: ‘Electrical properties of Na1/2Bi1/2TiO3-BaTiO3 ceramics’, J. Eur. Ceram. Soc., 2002, 22, (13), 2115–2121.
  • Xiang PH, Harinaka H, Takeda H, Nishida T, Uchiyama K, Shiosaki T: ‘Annealing effects on the characteristics of high Tc lead-free barium titanate-based positive temperature coefficient of resistivity ceramics’, J. Appl. Phys., 2008, 104, (9), 094108.
  • Xiang PH, Takeda H, Shiosaki T: ‘Characterization of manganese-doped BaTiO3-(Bi1/2Na1/2)TiO3 positive temperature coefficient of resistivity ceramics using impedance spectroscopy’, J. Appl. Phys., 2008, 103, (6), 064102.
  • Leng SL, Li GR, Zheng LY, Wang TB, Yin QR: ‘Synthesis of Y-doped BaTiO3-(Bi1/2K1/2)TiO3 lead-free positive temperature coefficient of resistivity ceramics and their PTC effects’, J. Am. Ceram. Soc., 2009, 92, (11), 2772–2775.
  • Takeda H, Harinaka H, Shiosaki T, Zubair MA, Leach C, Freer R, Hoshina T, Tsurumi T: ‘Fabrication and positive temperature coefficient of resistivity properties of semiconducting ceramics based on the BaTiO3-(Bi1/2K1/2)TiO3 system’, J. Eur. Ceram. Soc., 2010, 30, (2), 555–559.
  • Wei JF, Pu YP, Mao YQ, Wang JF: ‘Effect of the reoxidation on positive temperature coefficient behavior of BaTiO3-Bi0.5Na0.5TiO3’, J. Am. Ceram. Soc., 2010, 93, (6), 1527–1529.
  • Brutchey RL, Cheng GS, Gu Q, Morse DE: ‘Positive temperature coefficient of resistivity in donor-doped BaTiO3 ceramics derived from nanocrystals synthesized at low temperature’, Adv. Mater., 2008, 20, (5), 1029–1032.
  • Cai Z, Li X, Hu Q, Zeng X: ‘Laser sintering of thick-film PTC thermistor paste deposited by micro-pen direct-write technology’, Microelectron. Eng., 2009, 86, (1), 10–15.
  • Pullar RC, Zhang Y, Chen LF, Yang SF, Evans JRG, Petrov PK, Salak AN, Kiselev DA, Kholkin AL, Ferreira VM, Alford NM: ‘Manufacture and measurement of combinatorial libraries of dielectric ceramics. Part II. Dielectric measurements of Ba1−xSrxTiO3 libraries’, J. Eur. Ceram. Soc., 2007, 27, (16), 4437–4443.
  • Pullar RC, Zhang Y, Chen L, Yang S, Evans JRG, Salak AN, Kiselev DA, Kholkin AL, Ferreira VM, Alford NM: ‘Dielectric measurements on a novel Ba1−xCaxTiO3 (BCT) bulk ceramic combinatorial library’, J. Electroceram., 2009, 22, (1), 245–251.
  • Stark JG: ‘Chemistry data book’, 28–29; 1984, London, John Murray Ltd.
  • Kim JG, Tai WP, Ha JG: ‘PTCR characteristics and fabrication of porous, Sb-doped BaTiO3 ceramics’, J. Porous Mater., 2003, 10, (1), 69–74.
  • Zhou D, Cao M, Gong S: ‘A novel method of preparing Ba0.96Ca0.04Ti1.02O3 ceramics with low room temperature resistivity’, Mater. Sci. Eng. B, 2003, B99, (1–3), 399–402.
  • Li ZC, Bergman B: ‘Electrical properties and ageing characteristics of BaTiO3 ceramics doped by single dopants’, J. Eur. Ceram. Soc., 2005, 25, (4), 441–445.
  • Morrison FD, Sinclair DC, West AR: ‘Electrical and structural characteristics of lanthanum-doped barium titanate ceramics’, J. Appl. Phys., 1999, 86, (11), 6355–6366.
  • Cernea M, Monnereau O, Llewellyn P, Tortet L, Galassi C: ‘Sol-gel synthesis and characterization of Ce doped-BaTiO3’, J. Eur. Ceram. Soc., 2006, 26, (15), 3241–3246.
  • Nemati ZA, Tabibazar M, Deguire MR: ‘The effects of cerium doping on the resistivity of PTCR barium lead titanate’, Br. Ceram. Trans., 1993, 92, (3), 109–113.
  • Li ZC, Zhang H, Zou XD, Bergman B: ‘Synthesis of Sm-doped BaTiO3 ceramics and characterization of a secondary phase’, Mater. Sci. Eng. B: Solid State Mater., 2005, 116, (1), 34–39.
  • Motohira N, Okamoto H, Nakamura Y, Kishimoto A, Miyayama M, Yanagida H: ‘Single crystal growth and electrical properties of lanthanum- and gadolinium-doped BaTiO3’, J. Ceram. Soc. Jpn, 1996, 104, (4), 273–276.
  • Miao HY, Dong M, Tan GQ, Pu YP: ‘Doping effects of Dy and Mg on BaTiO3 ceramics prepared by hydrothermal method’, J. Electroceram., 2006, 16, (4), 297–300.
  • Lee WH, Groen WA, Schreinemacher H, Hennings D: ‘Dysprosium doped dielectric materials for sintering in reducing atmospheres’, J. Electroceram., 2000, 5, (1), 31–36.
  • Al-Shahrani A, Abboudy S: ‘Positive temperature coefficient in Ho-doped BaTiO3 ceramics’, J. Phys. Chem. Solids, 2000, 61, (6), 955–959.
  • Chang FG, Li T, Ge YX, Chen ZP, Liu ZS, Jing XP: ‘Electrical properties and positron annihilation study of (Ba1−xHox)TiO3 ceramics’, J. Mater. Sci., 2007, 42, (17), 7109–7115.
  • Jo SK, Han YH, Choi KH: ‘Effects of oxygen partial pressure control on the microstructure and PTCR properties of Ho doped BaTiO3’, J. Mater. Sci., 2007, 42, (16), 6696–6700.
  • Liu Y, West AR: ‘Ho-doped BaTiO3: polymorphism, phase equilibria and dielectric properties of BaTi1−xHoxO3−x/2: 0< = x< = 0.17’, J. Eur. Ceram. Soc., 2009, 29, (15), 3249–3257.
  • Viviani M, Buscaglia MT, Buscaglia V, Mitoseriu L, Testino A, Nanni P, Vladikova D: ‘Analysis of conductivity and PTCR effect in Er-doped BaTiO3 ceramics’, J. Eur. Ceram. Soc., 2004, 24, (6), 1221–1225.
  • Buscaglia MT, Viviani M, Buscaglia V, Bottino C, Nanni P: ‘Incorporation of Er3+ into BaTiO3’, J. Am. Ceram. Soc., 2002, 85, (6), 1569–1575.
  • Wang DJ, Gui ZL, Li LT: ‘Preparation and electrical properties of semiconducting strontium-lead titanate PTCR ceramics’, J. Mater. Sci. Mater. Electron., 1997, 8, (4), 271–276.
  • Ding SW, Jia G, Wang J, He ZY: ‘Electrical properties of Y- and Mn-doped BaTiO3-based PTC ceramics’, Ceram. Int., 2008, 34, (8), 2007–2010.
  • Wang Y, Li L, Qi J, Gui Z: ‘Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics’, Ceram. Int., 2002, 28, (6), 657–661.
  • Tzing WH, Tuan WH: ‘Effect of NiO addition on the sintering and grain growth behaviour of BaTiO3’, Ceram. Int., 1999, 25, (1), 69–75.
  • Langhammer HT, Müller T, Böttcher R, Mueller V, Abicht HP: ‘Copper-doped hexagonal barium titanate ceramics’, J. Eur. Ceram. Soc., 2004, 24, (6), 1489–1492.
  • Er G, Ishida S, Takeuchi N: ‘Durability of Nb-(Fe,Mn)-codoped PTCR BaTiO3 ceramics to reducing atmosphere’, J. Ceram. Soc. Jpn, 1998, 106, (5), 470–476.
  • Cui B, Yu P, Tian J, Chang Z: ‘Preparation and characterization of Co-doped BaTiO3 nanosized powders and ceramics’, Mater. Sci. Eng. B, 2006, B133, (1–3), 205–208.
  • Lee DK, Yoo HI, Becker KD: ‘Nonstoichiometry and defect structure of Mn-doped BaTiO3-δ’, Solid State Ion., 2002, 154, 189–193.
  • Lee JH, Kim SH, Cho SH: ‘Valence change of Mn ions in BaTiO3-based PTCR materials’, J. Am. Ceram. Soc., 1995, 78, (10), 2845–2848.
  • V’Yunov OI, Kovalenko LL, Belous AG: ‘Electrical properties of BaTi1−xMxO3 (M = Nb, Ta, Mo, W) ceramics’, Inorg. Mater., 2006, 42, (12), 1363–1368.
  • Maso N, Beltran H, Cordoncillo E, Flores AA, Escribano P, Sinclair DC, West AR: ‘Synthesis and electrical properties of Nb-doped BaTiO3’, J. Mater. Chem., 2006, 16, (30), 3114–3119.
  • Wang X, Chan HLW, Choy C: ‘Positive temperature coefficient of resistivity effect in niobium-doped barium titanate ceramics obtained at low sintering temperature’, J. Eur. Ceram. Soc., 2004, 24, (6), 1227–1231.
  • Maso N, Beltran H, Cordoncillo E, Sinclair DC, West AR: ‘Polymorphism and dielectric properties of Nb-doped BaTiO3’, J. Am. Ceram. Soc., 2008, 91, (1), 144–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.