Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 111, 2012 - Issue 3
1,137
Views
67
CrossRef citations to date
0
Altmetric
Original Article

Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide

, , , &
Pages 149-158 | Received 01 Aug 2011, Accepted 21 Oct 2011, Published online: 22 Nov 2013

References

  • Balasubramanian G, Dionysiou DD, Suidan MT, Baudin I, Lan JM: ‘Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water’, Appl. Catal. B: Environ., 2004, 47B, (2), 73–84.
  • Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M: ‘Immobilisation of TiO2 powder for the treatment of polluted water’, Appl. Catal. B: Environ., 1998, 17B, (1–2), 25–36.
  • Hur J, Koh Y: ‘Bactericidal activity and water purification of immobilized TiO2 photocatalyst in bean sprout cultivation’, Biotechnol. Lett., 2002, 24, (1), 23–25.
  • Mills A, Davies RH, Worsley D: ‘Water purification by semiconductor photocatalysis’, Chem. Soc. Rev., 1993, 22, (6), 417–434.
  • Fujihara K, Ohno T, Matsumura M: ‘Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles’, J. Chem. Soc., Faraday Trans., 1998, 94, 3705–3709.
  • Fujishima A, Honda K: ‘Electrochemical photolysis of water at a semiconductor electrode’, Nature, 1972, 238, (5358), 37–38.
  • Ni M, Leung M, Leung D, Sumathy K: ‘A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production’, Renew. Sustain. Energy Rev., 2007, 11, 401–425.
  • Luca V, Osborne M, Sizgek D, Griffith C, Araujo PZ: ‘Photodegradation of methylene blue using crystalline titanosilicate quantum-confined semiconductor’, Chem. Mater., 2006, 18, (26), 6132–6138.
  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA: ‘Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism’, Appl. Environ. Microbiol., 1999, 65, (9), 4094.
  • Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K: ‘Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system’, Environ. Sci. Technol., 1994, 28, (5), 934–938.
  • Abe R, Sayama K, Domen K, Arakawa H: ‘A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator’, Chem. Phys. Lett., 2001, 344, (3–4), 339–344.
  • Fotou GP, Vemury S, Pratsinis SE: ‘Synthesis and evaluation of titania powders for photodestruction of phenol’, Chem. Eng. Sci., 1994, 49, (24), 4939–4948.
  • Bacsa RR, Kiwi J: ‘Effect of rutile phase on the photocatalytic properties of nano-crystalline titania’, Appl. Catal. B: Environ., 1998, 16B, 19–29.
  • Reverchon E, Caputo G, Correra S, Cesti P: ‘Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale’, J. Supercrit. Fluids, 2003, 26, (3), 253–261.
  • Kobayakawa K, Murakami Y, Sato Y: ‘Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea’, J. Photochem. Photobiol. A: Chem., 2005, 170A, (2), 177–179.
  • Jean J, Ring T: ‘Nucleation and growth of monosized titania powders from alcohol solution’, Langmuir, 1986, 2, (2), 251–255.
  • Yoldas BE: ‘Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters’, J. Mater. Sci., 1986, 21, (3), 1087–1092.
  • Barringer EA, Bowen HK: ‘High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties’, Langmuir, 1985, 1, (4), 414–420.
  • Mahshid S, Askari M, Ghamsari MS: ‘Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution’, J. Mater. Process. Technol., 2007, 189, (1–3), 296–300.
  • Oskam G, Nellore A, Penn RL, Searson PC: ‘The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio’, J. Phys. Chem. B, 2003, 107B, (8), 1734–1738.
  • Bradley D, Mehrotra R, Gaur D: ‘Metal alkoxides’; 1978, London, Academic Press.
  • Bradley DC, Mehrotra RC, Rothwell I, Singh A: ‘Alkoxo and aryloxo derivatives of metals’; 2001, Academic Press. San Diego, CA, USA.
  • Chen YF, Lee CY, Yeng MY, Chiu HT: ‘The effect of calcination temperature on the crystallinity of TiO2 nanopowders’, J. ryst. Growth, 2003, 247, (3–4), 363–370.
  • Hague DC, Mayo MJ: ‘Controlling crystallinity during processing of nanocrystalline titania’, J. Am. Ceram. Soc., 1994, 77, (7), 1957–1960.
  • Stumm W, Morgan JJ: ‘Aquatic chemistry’; 1970, Chichester, John Wiley & Sons, Hoboken, NJ, USA.
  • Mahshid S, Askari M, Sasani Ghamsari M, Afshar N, Lahuti S: ‘Mixed-phase TiO2 nanoparticles preparation using sol–gel method’, J. Alloys Compd, 2009, 478, (1–2), 586–589.
  • Song KC, Pratsinis SE: ‘Synthesis of bimodally porous titania powders by hydrolysis of titanium tetraisopropoxide’, J. Mater. Res., 2000, 15, (11), 2322–2329.
  • Kim J, Chang Song K, Pratsinis SE: ‘The effect of hydrolysis temperature on synthesis of bimodally nanostructured porous titania’, J. Nanopart. Res., 2000, 2, (4), 419–424.
  • Bischoff BL, Anderson MA: ‘Peptization process in the sol–gel preparation of porous anatase (TiO2)’, Chem. Mater., 1995, 7, (10), 1772–1778.
  • Song KC, Pratsinis SE: ‘Control of phase and pore structure of titania powders using HCl and NH4OH catalysts’, J. Am. Ceram. Soc., 2001, 84, (1), 92–98.
  • Kominami H, Ishii Y, Kohno M, Konishi S, Kera Y, Ohtani B: ‘Nanocrystalline brookite-type titanium (IV) oxide photocatalysts prepared by a solvothermal method: correlation between their physical properties and photocatalytic activities’, Catal. Lett., 2003, 91, (1), 41–47.
  • Sclafani A, Herrmann JM: ‘Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania’, J. Phys. Chem., 1996, 100, 13655–13661.
  • Fox MA, Dulay MT: ‘Heterogeneous catalysis’, Chem. Rev., 1992, 93, 341–357.
  • Bakardjieva S, Stengl V, Szatmary L, Subrt J, Lukac J, Murafa N, Niznansky D, Cizek K, Jirkovsky J, Petrova N: ‘Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity’, J. Mater. Chem., 2006, 16, (18), 1709–1716.
  • Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC: ‘Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR’, J. Phys. Chem. B, 2003, 107B, (19), 4545–4549.
  • Liu G, Wang L, Yang HG, Cheng HM, Lu GQM: ‘Titania-based photocatalysts – crystal growth, doping and heterostructuring’, J. Mater. Chem., 2009, 20, (5), 831–843.
  • Gribb AA, Banfield JF: ‘Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2’, Am. Mineral., 1997, 82, (7–8), 717–728.
  • Klug HP, Alexander LE: ‘X-ray diffraction procedures: for polycrystalline and amorphous materials’, Vol. 1, 2nd edn, 992; 1974, Weinheim, Wiley-VCH, Weinheim, Germany.
  • Patterson A: ‘The Scherrer formula for X-ray particle size determination’, Phys. Rev., 1939, 56, (10), 978.
  • Spurr RA, Myers H: ‘Quantitative analysis of anatase–rutile mixtures with an X-ray diffractometer’, Anal. Chem., 1957, 29, (5), 760–762.
  • Li JG, Ishigaki T, Sun X: ‘Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties’, J. Phys. Chem. C, 2007, 111C, (13), 4969–4976.
  • Socrates G: ‘Infrared and Raman characteristic group frequencies: tables and charts’; 2004, Weinheim, Wiley.
  • Meagher EP, Lager GA: ‘Polyhedral thermal expansion in the TiO2 polymorphs; refinement of the crystal structures of rutile and brookite at high temperature’, Can. Mineral., 1979, 17, (1), 77.
  • Jiang H, Rühle M, Lavernia E: ‘On the applicability of the X-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials’, J. Mater. Res., 1999, 14, (02), 549–559.
  • Hanaor DAH, Sorrell CC: ‘Review of the anatase to rutile phase transformation’, J. Mater. Sci., 2011, 46, (4), 855–874.
  • Lowell S, Shields JE: ‘Powder surface area and porosity’; 1991, New York, Chapman and Hall, London, UK.
  • Condon JB: ‘Surface area and porosity determinations by physisorption: measurements and theory’; 2006, Amsterdam, Elsevier.
  • Kingery WD, Bowen HK, Uhlmann DR: ‘Introduction to ceramics’, 2nd edn; 1976, New York, Wiley-Interscience.
  • Chen J, Gao L, Huang J, Yan D: ‘Preparation of nanosized titania powder via the controlled hydrolysis of titanium alkoxide’, J. Mater. Sci., 1996, 31, (13), 3497–3500.
  • Ding XZ, Qi ZZ, He YZ: ‘Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol–gel process’, J. Mater. Sci. Lett., 1995, 14, (1), 21–22.
  • Ovenstone J, Yanagisawa K: ‘Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination’, Chem. Mater., 1999, 11, (10), 2770–2774.
  • Hyoung GL, Zuo JM: ‘Growth and phase transformation of nanometer sized titanium oxide powders produced by the precipitation method’, J. Am. Ceram. Soc., 2004, 87, (3), 473–479.
  • Hu Y, Tsai HL, Huang CL: ‘Effect of brookite phase on the anatase-rutile transition in titania nanoparticles’, J. Eur. Ceram. Soc., 2003, 23, (5), 691–696.
  • Penn RL, Banfield JF: ‘Formation of rutile nuclei at anatase twin interfaces and the phase transformation mechanism in nanocrystalline titania’, Am. Mineral., 1999, 84, (5–6), 871–876.
  • Lakshmi S, Renganathan R, Fujita S: ‘Study on TiO2-mediated photocatalytic degradation of methylene blue’, J. Photochem. Photobiol. A: Chem., 1995, 88A, (2–3), 163–167.
  • Zhang Q, Gao L, Guo J: ‘Effect of hydrolysis conditions on morphology and crystallization of nanosized TiO2 powder’, J. Eur. Ceram. Soc., 2000, 20, (12), 2153–2158.
  • Ding X, Li X: ‘Correlation between anatase to rutile transformation and grain growth in nanocrystalline titania powders’, J. Mater. Res., 1998, 13, (9), 2556–2559.
  • Iida Y, Ozaki S: ‘Grain growth and phase transformation of titanium oxide during calcination’, J. Am. Ceram. Soc., 1961, 44, (3), 120–127.
  • Zhang YH, Reller A: ‘Phase transformation and grain growth of doped nanosized titania’, Mater. Sci. Eng. C, 2002, C19, (1–2), 323–326.
  • Hanaor D, Michelazzi M, Chenu J, Leonelli C, Sorrell CC: ‘The effects of firing conditions on the properties of electrophoretically deposited titanium dioxide films on graphite substrates’, J. Eur. Ceram. Soc., 2011, 31, (15), 2877–2885.
  • Zhang Q, Gao L, Guo J: ‘Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis’, Appl. Catal. B: Environ., 2000, 26B, 207–215.
  • Tian G, Fu H, Jing L, Xin B, Pan K: ‘Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity’, J. Phys. Chem. C, 2008, 112C, (8), 3083–3089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.