120
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

Structural characterisation and electrical conductivity studies of BaMoO4 nanorods prepared by modified acrylamide assisted sol–gel process

, , , &
Pages 372-379 | Received 13 Feb 2014, Accepted 19 Apr 2014, Published online: 28 May 2014

References

  • Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H: One–Dimensional Nanostructures: Synthesis, Characterization and Applications, Adv. Mater., 2003, 15, 353–389.
  • Patzke GR, Krumech F and Nesper R: Oxidic Nanotubes and Nanorods-Anisotropic Modules for Future Nanotechnology, Angew. Chem. Int. Ed., 2002, 41, 2446–2461.
  • Wu Y, Yan H, Huang M, Messer B, Song JH and Yang P: Inorganic Semiconductor Nanowires: Rational Growth, Assembly and Novel Properties, Chem. Eur. J., 2002, 8, 1261–1268.
  • Tremel W: Inorganic Nanotubes Angew. Chem. Int. Ed., 1999, 38, 2175–2179.
  • Tenne R: Inorganic Nanotubes and Fullerene-Like Materials, Chem. Eur. J., 2002, 8, 5296–5304.
  • Rao CNR and Cheetham AK: Science and Technology of Nanomaterials: Current Status and Future Prospects, J. Mater. Chem., 2001, 11, 2887–2894.
  • Huijsmans JPP: Ceramics in solid oxide fuel cells, Curr. Opin. Solid State Mater. Sci., 2001, 5, 317–323.
  • Dyer PN, Richards RE, Russek SL and Taylor DM: Ion Transport membrane technology for oxygen separation and syngas production, Solid State Ionics, 2000, 134, 21–33.
  • Yang PD, Yan HQ, Mao S, Russo R, Johnson J, Saykally R, Mornis N, Pham J, He RR and J Choi H: Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater., 2002, 12, (5), 323–331.
  • John Goodenough B: Oxide-ion electrolytes, Annu. Rev. Mater. Res., 2003, 33, 91–128.
  • Kharton VV, Marquesa FMB and Atkinson A: Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 2004, 174, 135–149.
  • Dickinson RG: The crystal structure of wulfenite and scheelite, J. Am. Chem. Soc., 1920, 42, (1), 85–93.
  • Pupp C, Yamdagni R and Porter RF: Mass spectroscopy study of the evaporation of BaMoO4 and BaWO4, J. Inorg. Nucl. Chem., 1969, 31, 2021–2029.
  • Chan HW, Duh JG and Sheen SR: LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries, J. Power Sources, 2003, 115, 110–118.
  • Nallamuthu N, Prakash I, Venkateswarlu M, Balasubramaniyam S and Satyanarayana N: Sol-gel synthesis and characterization of Li2O-As2O5-SiO2 glassy system, Mater. Chem. Phys., 2008, 111, (1), 24–28.
  • Li GZ, Wang ZL, Quan ZW, Li CX and Lin J: Growth of Highly Crystalline CaMoO4: Tb3+ Phosphor layers on Spherical SiO2 Particles via Sol-Gel Process: Structural Characterization and Luminescent Properties, Cryst. Growth, 2007, 7, (9), 1797–1802.
  • Lin HL, Chiang RK and Li WT: Low-temperature synthesis of pure BaAl2Si2O8 glass-ceramic powder by citrate process, J. Non-Cryst. Solids, 2005, 351, 3044–3049.
  • Yoshimura M: Soft solution processing: concept and realization of direct fabrication of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) in solutions without post-firing, J. Mater. Sci., 2006, 41, 1299–1306.
  • Ryu JH, Yoon JW, Lim CJ and Shim KB: Microwave-assisted synthesis of barium molybdate by a citrate complex method and oriented aggregation, Mater. Res. Bull., 2005, 40, 1468–1476.
  • Bi J, Xiao DQ, Gao DJ, Yu P, Yu GL, Zang W and Zhu JG: BaMoO4 thin films prepared by electrochemical method at room temperature, Cryst. Res. Technol., 2003, 38, 935–940.
  • Vivekananda S, Venkateswarlu M and Satayanarayana N: Novel urea assisted polymeric citrate rout for the synthesis of nanocrystalline spinel LiMn2O4 powders, J. Alloys Compd, 2007, 441, 284–290.
  • Nallamuthu N, Prakash I, Satyanaraya N and Venkateswarlu M: Preparation, characterization and electrical conductivity studies of nanocrystalline La doped BaMoO4, J. Mater. Res. Bull., 2011, 46, 32–41.
  • Jena P, Nallamuthu N, Venkateswarlu M and Satyanarayana N: Preparation, characterization and electrical conductivity studies of nanocrystalline scheelite Ba1-xMoO4+δ, Ceram. Int., 2014, 40, 2349–2358.
  • Hu YM, Gu HS, Zhou D, Wang Z, Lai-Wa Chan H and Wang Y: Orientation-Control Synthesis of KTa0.25Nb0.75O3 Nanorods, J. Am. Ceram. Soc., 2009, 11, 1–5.
  • Xu G, Ren Z, Du P, Wang W, Shen G and Han G: Polymer-Assisted Hydrothermal Synthesis of Single-Crystalline Tetragonal Perovskite PbZr0.52Ti0.48O3 Nanowires, Adv. Mater., 2005, 17, 907–910.
  • Tarte P and liegeois-Duckaerts M: Vibrational studies of molybdates, tungates and related compounds-I: New infrared data and assignments for the scheelite-type compounds X “ MoO4 and X ” WO4, Spectrochem. Acta, 1972, 28A, 2029–2036.
  • Khanna RK and Lippincott ER: Infrared spectra of some scheelite structures, Spectrochem. Acta, 1968, 24A, 905–908.
  • Thongtem T, Kawphong S and Thongtem S: Influence of cetyltrimethylammonium bromide on the morphology of AWO4 (A =  Ca, Sr) prepared by cyclic microwave irradiation, Appl. Surf. Sci., 2008, 254, 7765–7769.
  • Thongtem T, Phuruangrat A and Thongtem S: Characterization of MeWO4 (Me  =  Ba, Sr and Ca) nanocrystalline prepared by sonochemical method, Appl. Surf. Sci., 2008, 254, 7581–7585.
  • Sczancvski JC, Cavalcant LS, Marana NL, da Silva RO, Tranquilin RL, Joya MR, Pizani PS, Varela JA, Sambrano JR, Siu Li M, Longo E and Andress J: Electronic structure and optical properties of BaMoO4 powders, Curr. Appl. Phys., 2010, 10, 614–624.
  • George S: ‘Infrared and Raman characteristics groups frequencies tables and charts’, 3rd edn; 2001, Chichester, John Wiley and Sons.
  • Porto SPS and Scotto JF: Raman Spectra of CaWO4, SrWO4, CaMoO4 and SrMoO4, Phys. Rev., 1967, 157, 716–719.
  • Jayaraman A, Batlogg B and van Utitert LG: High-pressure Raman study of alkaline-earth tungstates and a new pressure-induced phase transition in BaWO4, Phys. Rev. B, 1983, 28B, 4774–4777.
  • Baisev TT, Sobol AA, Voronko YUK and Zverev PG: Spontaneous Raman Spectroscopy of tungstate and molybdate crystals for Raman lasers, Opt. Mater., 2000, 15, 205–216.
  • Liegeois-Duyckaerts M and Tarte P: Vibrational studies of molybdates, tungstates and related compounds-II: New Raman data and assignments for the scheelite-type compounds, Spectrochem. Acta, 1972, 28, 2037–2051.
  • Marques APA, de Melo DMA, Paskocimas CA, Pizani PS, Joya MR, Leite ER and Longo E: Photoluminescent BaMoO4 nanopowders prepared by complex polymerization method (CPM), J. Solid Chem., 2006, 179, 671–678.
  • Thongetem T, Phuruangrat A and Thongtem S: Characterization of MMoO4 (M =  Ba, Sr and Ca) with different morphologies prepared using a cyclic microwave radiation, Matter Lett., 2008, 62, 454–457.
  • Calvalcant LS, Sczancoski JC, Tranguilin RL, Joya MR, Pizani PS, Varela JA and Longo E: BaMoO4 powders processed in domestic microwave-hydrothermal: synthesis, characterization and photoluminescence at room temperature, J. Phys. Chem. Solids, 2008, 69, 2674–2680.
  • Thangadurai V, Knittlmayer C and Weppner W: Metathetic room temperature preparation and characterization of scheelite-type ABO4 (A =  Ca, Sr, Ba, Pb; B =  Mo,W) powders, Mater. Sci. Eng. B, 2004, B106, 228–233.
  • Esaka T: Ionic conduction in substituted scheelite-type oxides, Solid State Ionics, 2000, 136, 1–9.
  • Kilner JA, Steele BCH and Sorenseri OT: Nonstoichiometric oxides, 237–252; 1981, New York, Academic Press.
  • Zhang W, Liu W, Li HP and Pan W: Highly enhanced electrical conductivity in electrospun La9.6Si6O26.4 nanofibers, Micro Nano Lett., 2012, 17, 554–557.
  • Lio T, Saski T, Suehara S and Sun Z: Position preference and diffusion path of an oxygen ion in apatite-type lanthanum silicate La9.33Si6O26: a density functional study, J. Mater. Chem., 2011, 21, 3234–3242.
  • Wei G, Huang ZN, Hong Q, Y. J. Lin, L. H. Wang, H. B. Chen, D. W. Liao: Dynamic study on chemisorbed species of oxygen over gas-solid interfaces, Chin. J. Chem. Phys., 1998, 11, 471–476.
  • Kingery WD, Bowen HK and Uhlmann DR: ‘Introduction to ceramics’, 2nd edn, 250; 1976, New York, John Wily and Sons Inc.
  • Kim S, Lee JS, Mitterbauer C, Q. M. Ramasse, M. C. Sarahan, N. D. Browning, H. J. Park: Anomalous electrical conductivity of nanosheaves of CeO2, Chem. Mater., 2009, 21, 1182–1186.
  • Bellino MG, Lamas DG and Walsoe de Reca NE: A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes, Adv. Mater., 2006, 18, 3005–3009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.