Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 114, 2015 - Issue 7: Cement and Concrete Science
404
Views
13
CrossRef citations to date
0
Altmetric
Invited Response

En route to multi-model scheme for clinker comminution with chemical grinding aids

, , , , , , , , & show all
Pages 393-401 | Received 24 Feb 2015, Accepted 30 Apr 2015, Published online: 01 Aug 2015

References

  • Weibel M. and Mishra R. K.: ‘Comprehensive understanding of grinding aids’, ZKG Int., 2014, 67, (6), 28–39.
  • Madlool N., Saidur R., Hossain M. and Rahim N.: ‘A critical review on energy use and savings in the cement industries’, Renewable and Sustainable Energy Rev., 2011, 15, (4), 2042–2060. doi: 10.1016/j.rser.2011.01.005
  • Atmaca A. and Kanoglu M.: ‘Reducing energy consumption of a raw mill in cement industry’, Energy, 2012, 42, (1), 261–269. doi: 10.1016/j.energy.2012.03.060
  • Fuerstenau D. and Abouzeid A.-Z.: ‘The energy efficiency of ball milling in comminution’, Int. J. Miner. Process., 2002, 67, (1), 161–185. doi: 10.1016/S0301-7516(02)00039-X
  • Masuda H., Higashitani K. and Yoshida H.: ‘Powder technology: fundamentals of particles, powder beds, and particle generation’; 2006, Boca Raton, FL, CRC Press.
  • Salman A. D., Ghadiri M. and Houndlow M.: ‘Handbook of powder technology’, Vol. 12, ‘Particle breakage’; 2007, Amsterdam, Elsevier Publishing.
  • Kanda Y. and Kotake N.: ‘Comminution energy and evaluation in fine grinding’, in ‘Handbook of powder technology’, (ed. Salman A. D. et al.., Vol. 12, 529–550; 2007, Amsterdam, Elsevier.
  • Phillips R.: ‘Multiscale modeling in the mechanics of materials’, Cur. Opin. Solid State Mater. Sci., 1998, 3, (6), 526–532. doi: 10.1016/S1359-0286(98)80020-X
  • Holland D. and Marder M.: ‘Ideal brittle fracture of silicon studied with molecular dynamics’, Phys. Rev. Lett., 1998, 80, (4), 746. doi: 10.1103/PhysRevLett.80.746
  • Mishra R. K., Flatt R. J. and Heinz H.: ‘Force field for tricalcium silicate and insight into nanoscale properties: cleavage, initial hydration, and adsorption of organic molecules’, J. Phys. Chem. C, 2013, 117C, (20), 10417–10432. doi: 10.1021/jp312815g
  • Heinz H., Lin T.-J., Mishra R. K. and Emami F. S.: ‘Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field’, Langmuir, 2013, 29, (6), 1754–1765. doi: 10.1021/la3038846
  • Mishra R. K., Fernandez-Carrasco L., Flatt R. J. and Heinz H.: ‘A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution’, Dalton Trans., 2014, 43, (27), 10602–10616. doi: 10.1039/c4dt00438h
  • Cygan R. T., Liang J.-J. and Kalinichev A. G.: ‘Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field’, J. Phys. Chem. B, 2004, 108B, (4), 1255–1266. doi: 10.1021/jp0363287
  • Kalinichev A. G. and Kirkpatrick R. J.: ‘Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases’, Chem. Mater., 2002, 14, (8), 3539–3549. doi: 10.1021/cm0107070
  • Shahsavari R., Pellenq R. J. M. and Ulm F.-J.: ‘Empirical force fields for complex hydrated calcio-silicate layered materials’, Phys. Chem. Chem. Phys., 2011, 13, (3), 1002–1011. doi: 10.1039/C0CP00516A
  • Taylor H. F. W.: ‘Cement chemistry’; 1997, London, Academic Press.
  • Mishra R. K., Flatt R. J. and Heinz H.: ‘A force field for dicalcium silicate and evaluation of surface properties’. In press.
  • Carmona H. A., Guimaraes A. V., Andrade J. S., Nikolakopoulos I., Wittel F. K. and Herrmann H. J.: ‘Fragmentation processes in two-phase materials’, Phys. Rev. E, 2015, 91E, (1), 012402–012407. doi: 10.1103/PhysRevE.91.012402
  • Carmona H. A., Wittel F. K., Kun F. and Herrmann H. J.: ‘Fragmentation processes in impact of spheres’, Phys. Rev. E, 2008, 77E, (5), 051302. doi: 10.1103/PhysRevE.77.051302
  • Kun F. and Herrmann H. J.: ‘Transition from damage to fragmentation in collision of solids’, Phys. Rev. E, 1999, 59E, (3), 2623–2632. doi: 10.1103/PhysRevE.59.2623
  • Wittel F. K.: ‘Single particle fragmentation in ultrasound assisted impact comminution’, Granular Matter, 2010, 12, (4), 447–455. doi: 10.1007/s10035-010-0189-4
  • Nikolakopoulos I.: ‘Clinker simulation’, MS thesis, ETH Zurich, Zurich, Switzerland, 2013.
  • Geissbühler D. and Sawley M. L.: ‘Particle motion and energy dissipation spectra in a planetary ball mill’. Proc. 3rd Int. Conf. on ‘Particle-based methods – fundamentals and applications’, eds. M Bischoff et al., Stuttgart, Germany, September 2013, 236–246.
  • Mishra B.: ‘A review of computer simulation of tumbling mills by the discrete element method, Part II - practical applications’, Int. J. Miner. Process., 2003, 71, (1), 95–112. doi: 10.1016/S0301-7516(03)00031-0
  • Cleary P. W.: ‘Ball motion, axial segregation and power consumption in a full scale two chamber cement mill’, Miner. Eng., 2009, 22, (9), 809–820. doi: 10.1016/j.mineng.2009.02.005
  • Cleary P. W. and Morrison R. D.: ‘Understanding fine ore breakage in a laboratory scale ball mill using DEM’, Miner. Eng., 2011, 24, (3), 352–366. doi: 10.1016/j.mineng.2010.12.013
  • Weerasekara N., Powell M., Cleary P., Tavares L. M., Evertsson M., Morrison R., Quist J. and Carvalho R.: ‘The contribution of DEM to the science of comminution’, Powder Technol., 2013, 248, 3–24. doi: 10.1016/j.powtec.2013.05.032
  • Burmeister C. F. and Kwade A.: ‘Process engineering with planetary ball mills’, Chem. Soc. Rev., 2013, 42, (18), 7660–7667. doi: 10.1039/c3cs35455e
  • Rosenkranz S., Breitung-Faes S. and Kwade A.: ‘Experimental investigations and modelling of the ball motion in planetary ball mills’, Powder Technol., 2011, 212, (1), 224–230. doi: 10.1016/j.powtec.2011.05.021
  • Herbst J. A.: ‘A microscale look at tumbling mill scale-up using high fidelity simulation’, Int. J. Miner. Process., 2004, 74, S299–S306. doi: 10.1016/j.minpro.2004.07.026
  • Iwasaki T., Yabuuchi T., Nakagawa H. and Watano S.: ‘Scale-up methodology for tumbling ball mill based on impact energy of grinding balls using discrete element analysis’, Adv. Powder Technol., 2010, 21, (6), 623–629. doi: 10.1016/j.apt.2010.04.008
  • Cundall P. A. and Strack O. D.: ‘A discrete numerical model for granular assemblies’, Geotechnique, 1979, 29, (1), 47–65. doi: 10.1680/geot.1979.29.1.47
  • Mumme W.: ‘Crystal structure of tricalcium silicate from a Portland cement clinker and its application to quantitative XRD analysis’, Neues Jahrb. Mineral. Monatsh., 1995, 4, 145–160.
  • Jost K., Ziemer B. and Seydel R.: ‘Redetermination of the structure of-dicalcium silicate’, Acta Crystallogr. B, 1977, 33B, (6), 1696–1700. doi: 10.1107/S0567740877006918
  • Mondal P. and Jeffery J.: ‘The crystal structure of tricalcium aluminate, Ca3Al2O6’, Acta Crystallogr. B, 1975, 31B, (3), 689–697. doi: 10.1107/S0567740875003639
  • Redhammer G. J., Tippelt G., Roth G. and Amthauer G.: ‘Structural variations in the brownmillerite series Ca–2(Fe2–xAlx)O–5: single-crystal X-ray diffraction at 25 degrees C and high-temperature X-ray powder diffraction (25 degrees C < = T < = 1000 degrees C)’, Am. Miner., 2004, 89, (2–3), 405–420. doi: 10.2138/am-2004-2-322

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.