0
Views
6
CrossRef citations to date
0
Altmetric
Articles

The ecological optimization of a generalized irreversible Carnot heat pump for a generalized heat transfer law

Pages 5-10 | Published online: 12 Apr 2016

References

  • F. L. Curzon and B. Ahlborn: Efficiency of a Carnot engine at maximum power output. Am. J. Phys., 1975, 43(1), 22–24.
  • A. Bejan: ‘Entropy generation through heat and fluid flow’, Wiley, New York, 1982.
  • B. Andresen: ‘Finite-time thermodynamics’, Physics Laboratory II, University of Copenhagen, 1983.
  • S. Sieniutycz and P. Salamon: ‘Advances in thermodynamics, Vol. 4, Finite time thermodynamics and thermoeconomics’, Taylor & Francis, New York, 1990.
  • A. de Vos: ‘Endoreversible thermodynamics of solar energy conversion’, Oxford University Press, Oxford, 1992.
  • V. Radcenco: ‘Generalized thermodynamics’, Editura Techica, Bucarest, 1994.
  • B. Andresen: Finite-time thermodynamics and thermodynamic length. Rev. Gen. Therm., 1996, 35(418–419 ), 647–650.
  • M. Feidt: Thermodynamique et Optimisation Energetique des Systems et Procedes (2nd Ed.), Technique et Documentation, Lavoisier, 1996 (in French).
  • A. Bejan: Entropy generation minimization: the new thermodynamics of finite-size device and finite-time processes. J. Appl. Phys., 1996, 79(3), 1191–1218.
  • K. H. Hoffmann, J. M. Burzler and S. Schubert: ‘Endoreversible thermodynamics’. J. Non-Equilib. Thermodyn., 1997, 22(4), 311–355.
  • R. S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast and A. M. Tsirlin: ‘Thermodynamic optimization of finite time processes’, Wiley, Chichester, 1999.
  • L. Chen, C. Wu and F. Sun: Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn., 1999, 24(4), 327–359.
  • V. A. Mironova, S. A. Amelkin and A. M. Tsirlin: ‘Mathematical methods of finite time thermodynamics’, Khimia, Moscow, 2000 (in Russian).
  • A. Bejan: ‘Shape and structure, from engineering to nature’, Cambridge University Press, Cambridge, UK, 2000.
  • J. M. Gordon and K. C. Ng: ‘Cool thermodynamics’, Cambridge International Science Publishers, Cambridge, UK, 2000.
  • P. Salamon, J. D. Nulton, G. Siragusa, T. R. Andresen and A. Limon: Principles of control thermodynamics. Energy, Int. J., 2001, 26(3), 307–319.
  • J. C. Denton: Thermal cycles in classical thermodynamics and nonequilibrium thermodynamics in contrast with finite time thermodynamics. Energy Convers. Mgmt., 2002, 43(13), 1583–1617.
  • S. Sieniutycz: Thermodynamic limits on production or consumption of mechanical energy in practical and industry systems. Prog. Energy Combust. Sci., 2003, 29(3), 193–246.
  • L. Chen and F. Sun: ‘Advances in finite-time thermodynamics: analysis and optimization’, Nova Science Publishers, New York, 2004.
  • A. Durmayaz, O. S. Sogut, B. Sahin and H. Yavuz: Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics, Progress Energy & Combustion Science, 2004, 30(2): 175–217.
  • F. Angulo-Brown: An ecological optimization criterion for finitetime heat engines. J. Appl. Phys., 1991, 69(11) 7465–7469.
  • L. A. Arias-Hernandez and F. A. Angulo-Brown: A general property of endoreversible thermal engines. J. Appl. Phys., 1997, 81(7), 2973–2979.
  • Z. Yan: Comment on ‘Ecological optimization criterion for finitetime heat engines’. J. Appl. Phys., 1993, 73(7), 3583.
  • F. Angulo-Brown, L. A. Arias-Hernandez and R. A. Paez- Hernandez: A general property of non-endoreversible thermal cycles. J. Phys. D: Appl. Phys., 1999, 32(12), 1415–1420.
  • C. Y. Cheng and C. K. Chen: The ecological optimization of an irreversible Carnot heat engine. J. Phys. D: Appl. Phys., 1997, 30(11), 1602–1609.
  • C. Y. Cheng and C. K. Chen: Ecological optimization of an endoreversible Brayton cycle. Energy Convers. Mgmt., 1998, 39(1–2), 33–44.
  • S. K. Tyagi, S. C. Kaushik and R. Salhotra: Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines. J. Phys. D: Appl. Phys., 2002, 35(20), 2668–2675.
  • L. Chen, J. Zhou, F. Sun and C. Wu: Ecological optimization for generalized irreversible Carnot engines. Appl. Energy, 2004, 77(3), 327–338.
  • X. Zhu, L. Chen, F. Sun and C. Wu: The ecological optimization of a generalized irreversible Carnot engine with a generalized heat transfer law. Int. J. Ambient Energy, 2003, 24(4), 189–194.
  • L. A. Arias-Hernandez, G. Aresde Parga and F. A. Angulo-Brown: A variational ecological-type optimization of some thermal -engine models. Open Systems Information Dynamics, 2004, 11(2), 123–138.
  • L. Chen, F. Sun and W. Chen: On the ecological figures of merit for thermodynamic cycles. J. Eng. Thermal Energy Power, 1994, 9(6), 374–376 (in Chinese).
  • F. Sun, L. Chen and W. Chen: Ecological optimization criteria for an endoreversible Carnot heat pump. J. Naval Acad. Eng., 1995, (4) 22–26 (in Chinese).
  • F. Wu, L. Chen and F. Sun: Ecological optimum performance of a spin-1/2 quantum heat pump. J. Naval Acad. Eng., 1996, (4), 1–6 (in Chinese).
  • S. K. Tyagi, S. C. Kaushik and R. Salohtra: Ecological optimization and parameteric study of irreversible Stirling and Ericsson heat pumps. J. Phys. D: Appl. Phys., 2002, 35(16), 2065–2058.
  • L. Chen and F. Sun: A new model of irreversible heat pumps and its performance optimization. J. Naval Acad. Eng., 1995, (4), 49–58 (in Chinese).
  • C. Cheng and C. Chen: Performance optimization of an irreversible heat pump. J. Phys. D: Appl. Phys., 1995, 28(12), 2451–2454.
  • L. Chen and F. Sun: The effect of heat leak, heat resistance and internal irreversibility on the optimal performance of Carnot heat pumps. J. Eng. Thermophys., 1997, 18(1), 25–27 (in Chinese).
  • N. Ni, L. Chen, F. Sun and C. Wu: Effect of heat transfer law on the performance of a generalized irreversible Carnot heat pump. J. Inst. Energy, 1999, 72(491), 64–68.
  • A. Kodal, B. Sahin and T. Yilmaz: Effects of internal irreversibility and heat leakage on the finite time thermoeconomic performance of refrigerators and heat pumps. Energy Convers. Mgmt., 2000, 41(6), 607–619.
  • X. Zhu, L. Chen, F. Sun and C. Wu: Optimal performance of a generalized irreversible Carnot heat pump with a generalized heat transfer law. Phys. Scrip., 2001, 64(6), 584–587.
  • L. Chen, X. Zhu, F. Sun and C. Wu: Ecological optimization for generalized irreversible Carnot heat pumps. J. Phys. D: Appl. Phys., 2005, in press.
  • F. Sun, W. Chen, L. Chen and C. Wu: Optimal performance of an endoreversible Carnot heat pump. Energy Convers. Mgmt., 1997, 38(14), 1439–1443.
  • C. Wu, L. Chen and F. Sun: Effect of heat transfer law on finite time exergoeconomic performance of a Carnot heat pump. Energy Convers. Mgmt., 1998, 39(7), 579–588.
  • W. Chen, F. Sun, S. Cheng and L. Chen: Study on optimal performance and working temperature of endoreversible forward and reverse Carnot cycles. Int. J. Energy Res., 1995, 19(9), 751–759.
  • C. H. Blanchard: Coefficient of performance for finite-speed heat pump. J. Appl. Phys., 1980, 51(5), 2471–2472.
  • Y. Goth and M. Feidt: Optimum COP for endoreversible heat pump or refrigerating machine. CR Acad. Sci. Paris, 1986, 303(1), 19–24.
  • C. Wu: Specific heating load of an endoreversible Carnot heat pump. Int. J. Ambient Energy, 1993, 14(1), 25–28.
  • C. Wu, L. Chen and F. Sun: Optimization of steady flow heat pumps cycles. Energy Convers. Mgmt., 1998, 39(5–6), 445–453.
  • X. Zhu, L. Chen and C. Wu: The optimal performance of a Carnot heat pump under the mixed heat resistance condition. Open System Information Dynamics, 2002, 9(3), 251–256.
  • L. Chen, C. Wu and F. Sun: Heat pump performance with internal heat leak. Int. J. Ambient Energy, 1997, 18(3), 129–134.
  • C. Wu, L. Chen and F. Sun: Finite time thermodynamic performance for a class of irreversible heat pumps, Presented at ASME ASIA’97 Conf., 30 Sept-2 Oct 1997, Singapore.
  • F. Sun, W. Chen and L. Chen: Optimal performance and rate of entropy production for forward and reverse irreversible Carnot cycles. Chin. J. Eng. Thermophys., 1991, 12(4), 357–360.
  • M. A. Ait-Ali: The maximum coefficient of performance of internally irreversible refrigerators and heat pumps. J. Phys. D: Appl. Phys., 1996, 29(4), 975–980.
  • C. T. O’Sullivan: Newton’s law of cooling—A critical assessment. Am. J. Phys., 1990, 58(10), 956–960.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.