444
Views
16
CrossRef citations to date
0
Altmetric
Perspective

Glucose biosensors: progress, current focus and future outlook

&
Pages B140-B149 | Received 04 Dec 2014, Accepted 12 Dec 2014, Published online: 05 Mar 2015

References

  • Schrot R. J., Patel K. T. and Foulis P.: ‘Evaluation of inaccuracies in the measurement of glycemia in the laboratory, by glucose meters, and through measurement of hemoglobin A1c’, Clin. Diabetes, 2007, 25, 43–49.
  • Chen C., Xie Q., Yang D., Xiao H., Fu Y., Tan Y. and Yao S.: ‘Recent advances in electrochemical glucose biosensors: a review’, RSC Adv., 2013, 3, 4473–4491.
  • Dzyadevych S. V., Arkhypova V. N., Soldatkin A. P., Elskaya A. V., Martelet C. and Jaffrezic-Renault N.: ‘Amperometric enzyme biosensors: past, present and future’, IRBM, 2008, 29, 171–180.
  • Muscatello M. M. W., Stunja L. E. and Asher S. A.: ‘Polymerized crystalline colloidal array sensing of high glucose concentrations’, Anal. Chem., 2009, 81, 4978–4986.
  • Odaci D., Gacal B. N., Gacal B., Timur S. and Yagci Y.: ‘Fluorescence sensing of glucose using glucose oxidase modified by PVA-pyrene prepared via “click” chemistry’, Biomacromolecules, 2009, 10, 2928–2934.
  • Turner A. P. F., Karube I. and Wilson G. S.: ‘Biosensors – fundamentals and applications’, 719–800; 1987, New York, Oxford University Press.
  • Kricka L. J.: ‘Molecular and ionic recognition by biological systems’, in ‘Chemical sensors’, (ed. Edmonds T. E.., 3–14; 1988, Glasgow, Blackie and Sons.
  • Buch R. M. and Rechnitz G. A.: ‘Intact chemoreceptor-based biosensors: responses and analytical limits’, Biosensors, 1989, 4, 215–230.
  • L. Clark, Jr and Lyons C.: ‘Electrode systems for continuous monitoring in cardiovascular surgery’, Ann. NY Acad. Sci., 1962, 102, 29–45.
  • Sadana A.: ‘Binding and dissociation kinetics for different biosensor applications using fractals’, 219–242; 2006, Amsterdam, Elsevier Science.
  • Liu G. and Lin Y.: ‘Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents’, Anal. Chem., 2005, 77, 5894–5901.
  • Niraj M. M., Gupta H. M., Varshney S., Pandey S. and Singh S.: ‘Sensors for diabetes: glucose biosensors by using different newer techniques: a review’, Int. J. Ther. Appl., 2012, 6, 28–37.
  • Turner A. P. F., Karube I. and Wilson G. S.: ‘Biosensors – fundamentals and applications’, 719–800; 1987, New York, Oxford University Press.
  • Kricka L. J.: ‘Molecular and ionic recognition by biological systems’, in ‘Chemical sensors’, (ed. Edmonds T. E.., 3–14; 1988, Glasgow, Blackie and Sons.
  • Buch R. M. and Rechnitz G. A.: ‘Intact chemoreceptor-based biosensors: responses and analytical limits’, Biosensors, 1989, 4, 215–230.
  • Vo-Dinh T. and Cullum B.: ‘Biosensors and biochips: advances in biological and medical diagnostics Fresenius’, J. Anal. Chem., 2000, 366, (6–7), 540–551.
  • Conroy P. J., Hearty S., Leonard P. and O'Kennedy R. J.: ‘Antibody production, design and use for biosensor-based applications, Semin’, Cell Dev. Biol., 2009, 20, 10–26.
  • Erden P. E. and Kilic E.: ‘A review of enzymatic uric acid biosensors based on amperometric detection’, Talanta, 2013, 107, 312–323.
  • Xu X. H. and Bard A. J.: ‘Immobilization and hybridization of DNA on an aluminum(III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection’, J. Am. Chem. Soc., 1995, 117, 2627–2631.
  • Mikkelsen S. R.: ‘Electrochemical biosensors for DNA sequence detection’, Electroanalysis, 1996, 4, 7–14.
  • Okahata Y., Matsunobu Y., Ijiro K., Mukae M., Murakami A. and Makino K.: ‘Hybridization of nucleic acids immobilized on a quartz crystal microbalance’, J. Am. Chem. Soc., 1992, 114, 8299–8300.
  • Liu Q., Wu C., Cai H., Hu N., Zhou J. and Wang P.: ‘Cell-based biosensors and their application in biomedicine’, Chem. Rev., 2014, 114, 6423–6461.
  • Rainina E., Efremenco E., Varfolomeyev S., Simonian A. L. and Wild J.: ‘The development of a new biosensor based on recombinant E. coli for the detection of organophosphorous neurotoxins’, Biosens. Bioelectron., 1996, 11, 991–1000.
  • Lei Y., Chenb W. and Mulchandani A.: ‘Microbial biosensors’, Anal. Chim. Acta, 2006, 568, 200–210.
  • Souza S. F. D.: ‘Microbial biosensors’, Biosens. Bioelectron., 2001, 16, 337–353.
  • Lange K., Rapp B. E. and Rapp M.: ‘Surface acoustic wave biosensors: a review’, Anal. Bioanal. Chem., 2008, 391, 1509–1519.
  • Amico D., Di Natale A. and Verona C.: ‘Acoustic devices’, in ‘Handbook of biosensors and electronic noses: medicine, food and the environment’, (ed. Kress-Rogers E.., 197–223; 1997, New York, CRC Press.
  • Chen C., Xie Q., Yang D., Xiao H., Fu Y., Tan Y. and Yao S.: ‘Recent advances in electrochemical glucose biosensors: a review’, RSC Adv., 2013, 3, 4473–4491.
  • Borisov S. M. and Wolfbeis O. S.: ‘Optical biosensors’, Chem. Rev., 2008, 108, 423–461.
  • Dey D. and Goswami T.: ‘Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication’, J. Biomed. Biotechnol., 2011, 2011, 348218.
  • Ngeh-Ngwainbia J., Suleimana A. A. and Guilbault G. G.: ‘Piezoelectric crystal biosensors’, Biosens. Bioelectron., 1990, 5, 13–26.
  • Lammers F. and Scheper T.: ‘Thermal biosensors in biotechnology’, Adv. Biochem. Eng. Biotechnol., 1999, 64, 35–67.
  • Zhou Y., Cheng-Wei C. and Liang H.: ‘Interfacial structures and properties of organic materials for biosensors: an overview’, Sensors, 2012, 12, 15036–15062.
  • Guilbault G. and Lubrano G.: ‘An enzyme electrode for the amperometric determination of glucose’, Anal. Chim. Acta, 1973, 64, 439–455.
  • Cass A., Davis G., Francis G., Hill H. A., Aston W., Higgins I. J., Plotkin E., Scott L. and Turner A. P.: ‘Ferrocene-mediated enzyme electrode for amperometric determination of glucose’, Anal. Chem., 1984, 56, 667–671.
  • Frew J. and Hill H. A.: ‘Electrochemical biosensors’, Anal. Chem., 1987, 59, 933A–939A.
  • Hilditch P. and Green M.: ‘Disposable electrochemical biosensors’, Analyst, 1991, 116, 1217–1220.
  • Matthews D., Holman R., Brown E., Streemson J., Watson A. and Hughes S.: ‘Pen-sized digital 30-second blood glucose meter’, Lancet, 1987, 2, 778–779.
  • Murray R. W., Ewing A. and Durst R.: ‘Chemically modified electrodes molecular design for electroanalysis’, Anal. Chem., 1987, 59, 379A–390A.
  • Degani Y. and Heller A.: ‘Direct electrical communication between chemically modified enzymes and metal electrodes. 2.Methods for bonding elctron transfer relays to glucose oxidase and D-aminoacid-oxidase’, J. Phys. Chem., 1987, 9, 1285–1289.
  • Willner I., Heleg-Shabtai V., Blonder R., Katz E. and Tao G.: ‘Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes’, J. Am. Chem. Soc., 1996, 118, 10321–10322.
  • Bindra D., Zhang Y., Wilson G., Sternberg R., Trevenot D., Reach G. and Moatti D.: ‘Design and in-vitro studies of a needle type glucose sensors for subcutaneous monitoring’, Anal. Chem., 1991, 63, 1692–1696.
  • Henry C.: ‘Getting under the skin: implantable glucose sensors’, Anal. Chem., 1998, 70, 594A–598A.
  • Schmidtke D., Freeland A., Heller A. and Bonnecaze R.: ‘Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin’, Proc. Natl Acad. Sci. USA, 1998, 95, 294–299.
  • Wang J.: ‘Carbon-nanotube based electrochemical biosensors: a review’, Electroanalysis, 2005, 17, 7–14.
  • Xiao Y., Ju H. X. and Chen H. Y.: ‘Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode’, Anal. Biochem., 2000, 278, 22–28.
  • Zimmermann H., Lindgren A., Schuhmann W. and Gorton L.: ‘Anisotropic orientation of horseradish peroxidase by reconstitution on a thiol-modified gold electrode’, Chem. Eur. J., 2000, 6, 592–599.
  • Chattopadhyay K. and Mazumdar S.: ‘Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactants’, Bioelectrochemistry, 2001, 53, 17–24.
  • Chen X., Ruan C., Kong J. and Deng J.: ‘Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode’, J. Anal. Chim. Acta, 2000, 412, 89–98.
  • Gorton L., Jonsson-Petterson G., Csoregi E., Johansson K., Dominguez E. and Marko-Varga G.: ‘Amperometric biosensors based on an apparent direct electron transfer between electrodes and immobilized peroxidases’, Analyst, 1992, 117, 1235–1241.
  • Wollenbeger U., Wang J., Ozsoz M. and Scheller F.: ‘Bulk modified enzyme electrodes for reagentless detection of peroxides’, Bioelectrochem. Bioenerg., 1991, 26, 287–296.
  • Kulys J. J., Bilitewski U. and Schmid R. D.: ‘The kinetics of simultaneous conversion of hydrogen peroxide and aromatic compounds at peroxidase electrodes’, Bioelectrochem. Bioenerg., 1991, 26, 276–286.
  • Klonoff D. C.: ‘Continuous glucose monitoring: roadmap for 21st century diabetes therapy’, Diabetes, 2005, 28, 1231–1239.
  • Stephenson-Brown A., Wang H. C., Iqbal P., Preece J. A., Long Y., Fossey J. S., James T. D. and Mendes P. M.: ‘Glucose selective surface plasmon resonance-based bis-boronic acid sensor’, Analyst, 2013, 138, (23), 7140–7145.
  • Yang W., Gao X. and Wang B.: ‘Boronic acid compounds as potential pharmaceutical agents’, Med. Res. Rev., 2003, 23, 346–368.
  • Wang W., Gao X. and Wang B.: ‘Boronic acid-based sensors for carbohydrates’, Curr. Org. Chem., 2002, 6, 1285–1317.
  • Lavigne J. J. and Anslyn E. V.: ‘Teaching old indicators new tricks: a colorimetric chemosensing ensemble for tartrate/malate in beverages’, Angew. Chem. Int. Ed., 1999, 38, 3666–3669.
  • Eggert H., Frederiksen J., Morin C. and Norrild J. C.: ‘A new glucose-selective fluorescent bisboronic acid. First report of strong (α-furanose complexation in aqueous solution at physiological pH’, J. Org. Chem., 1999, 64, 3846–3852.
  • Wang W., Gao S. and Wang B.: ‘Building fluorescent sensors by template polymerization: the preparation of a fluorescent sensor for D-fructose’, Org. Lett., 1999, 1, 1209–1212.
  • Arimori S., Bosch L. I., Ward C. J. and James T. D.: ‘Fluorescent internal charge transfer (ICT) saccharide sensor’, Tetrahedron Lett., 2001, 42, 4553–4555.
  • Karnati V. V., Gao X., Gao S., Yang W., Ni W., Sankar S., Wang B and: ‘A glucose-selective fluorescence sensor based on boronicacid-diol recognition’, Bioorg. Med. Chem. Lett., 2002, 12, (23), 3373–3377.
  • James T. D., Sandanayake K. R. A. S. and Shinkai S.: ‘Chiral discrimination of monosachrides using a fluorescent molecular sensor’, Nature, 1995, 374, 345–347.
  • Cao H., Diaz D. I., DiCesare D., Lakowicz J. R. and Heagy M. D.: ‘Monoboronic acid sensor that displays anomalous fluorescence sensitivity to glucose’, Org. Lett., 2002, 4, 1503–1505.
  • Trupp S., Schweitzer A. and Mohr G. J.: ‘A fluorescent water-soluble naphthalimide-based receptor for saccharides with highest sensitivity in the physiological pH range’, Org. Biomol. Chem., 2006, 4, 2965–2968.
  • Westmark P. R., Gardiner S. J. and Smith B.: ‘Selective monosaccharide transport through lipid bilayers using boronic acid carriers’, J. Am. Chem. Soc., 1996, 118, 11093–11100.
  • Riggs J. A., Hossler K. A., Smith B. D., Karpa M. J., Griffin G. and Duggan P. J.: ‘Nucleotide carrier mixture with transport selectivity for ribonucleoside-5′-phosphates’, Tetrahedron Lett., 1996, 37, 6303–6306.
  • Draffin S. P., Duggan P. J. and Duggan S. A. M.: ‘Highly fructose selective transport promoted by boronic acids based on a pentaerythritol core’, Org. Lett., 2001, 3, 917–920.
  • Liu X., Hubbard J. and Scouten W.: ‘Synthesis and structural investigation of two potential boronate affinity chromatography ligands’, J. Organomet. Chem., 1995, 493, 91–94.
  • Psotova J. and Janiczek O.: ‘Boronate affinity-chromatography and the applications’, Chem. Listy, 1995, 89, 641–646.
  • Singhal R. P., Ramamurthy B., Govindraj N. and Sarwar Y.: ‘New ligands for boronate affinity-chromatography – synthesis and properties’, J. Chromatogr. A, 1991, 543A, (1), 17–38.
  • Shoji E. and Freund M. S.: ‘Potentiometric saccharide detection based on the pka changes of poly(aniline boronic acid)’, J. Am. Chem. Soc., 2002, 124, 12486–12493.
  • Takahashi S. and Anzai J.: ‘Phenylboronic acid monolayer-modified electrodes sensitive to sugars’, Langmuir, 2005, 21, 5102–5107.
  • Luo X., Morrin A., Killard A. J. and Smyth M. R.: ‘Application of nanoparticles in electrochemical sensors and biosensors’, Electroanalysis, 2006, 18, (4), 319–326.
  • Li H., Kang Z., Liu Y. and Lee S. T.: ‘Carbon nanodots: synthesis, properties and applications’, J. Mater. Chem., 2012, 22, 24230–24253.
  • Ding C., Zhu A. and Tian Y.: ‘Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging’, Acc. Chem. Res., 2014, 47, (1), 20–30.
  • Wei W. L., Xu C., Ren J. S., Xu B. L. and Qu X. G.: ‘Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene’, Chem. Commun., 2012, 48, 1284–1286.
  • Bai W. J., Zheng H. Z., Long Y. J., Mao X. J., Gao M. and Zhang L. Y.: ‘A carbondots-based fluorescence turn-on method for DNA determination’, Anal. Sci., 2011, 27, 243–246.
  • Lin Z., Xue W., Chen H., J and Lin M.: ‘Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing’, Anal. Chem., 2011, 83, 8245–8251.
  • Zhao H. X., Liu L. Q., Liu Z. D., Wang Y., Zhao X. J. and Huang C. Z.: ‘Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots’, Chem. Commun., 2011, 47, 2604–2606.
  • Shi W. B., Wang Q. L., Long Y. J., Cheng Z. L., Chen S. H., Zheng H. Z. and Huang Y. M.: ‘Carbon nanodots as peroxidase mimetics and their applications to glucose detection’, Chem. Commun., 2011, 47, 6695–6697.
  • Dai H., Yang C. P., Tong Y. J., Xu G. F., Ma X. L., Lin Y. Y. and Chen G. N.: ‘Label-free electrochemiluminescent immunosensor for α-fetoprotein: performance of Nafion–carbon nanodots nanocomposite films as antibody carriers’, Chem. Commun., 2012, 48, 3055–3057.
  • Wei J., Qiang L., Ren J., Ren X., Tang F. and Meng X.: ‘Fluorescence turn-off detection of hydrogen peroxide and glucose directly using carbon nanodots as probes’, Anal. Methods, 2014, 6, 1922–1927.
  • Shi W., Wang Q., Long Y., Cheng Z., Chen S., Zheng H. and Huang Y.: ‘Carbon nanodots as peroxidase mimetics and their applications to glucose detection’, Chem. Commun., 2011, 47, 6695–6697.
  • Kiran S. and Misra R. D. K.: ‘Mechanism of intracellular detection of glucose through non-enzymatic and boronic acid functionalized carbon dots’, Journal of Biomedical Research A, in press (2015).
  • Wang X., Qu K., Xu B., Rena J. and Qu X.: ‘Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents’, J. Mater. Chem., 2011, 21, 2445–2450.
  • Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H. and Yang B.: ‘Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging’, Angew Chem. Int. Ed., 2013, 52, 3953–3957.
  • Egawa Y., Seki T., Takahashib S. and Anzai J.: ‘Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives’, Mater. Sci. Eng. C, 2011, C31, 1257–1264.
  • Pan B., Cui D., Xu P., Li Q., Huang T., He R. and Gao F.: ‘Study on interaction between gold nanorod and bovine serum albumin’, Colloids Surf. A, 2007, 295A, 217–222.
  • Cui D., Tian F., Coyer S. R., Wang J., Pan B., Gao F., He R. and Zhang Y.: ‘Effects of antisensemyc-conjugated single-walled carbon nanotubes on HL-60 cells’, J. Nanosci. Nanotechnol., 2007, 7, 1639–1646.
  • You X., He R., Gao F., Shao J., Pan B. and Cui D.: ‘Hydrophilic high-luminescent magnetic nanocomposites’, Nanotechnology, 2007, 18, 035701:1–035701:5.
  • Joaquim C. G., da Silva E. and Goncalves H. M. R.: ‘Analytical and bioanalytical applications of carbon dots’, Trend Anal. Chem., 2011, 30, 1327–1336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.