Publication Cover
Materials Technology
Advanced Performance Materials
Volume 31, 2016 - Issue 3
387
Views
7
CrossRef citations to date
0
Altmetric
Research Papers

In situ solution chemical reaction deposition of Bi2S3 quantum dots on mesoscopic TiO2 films for application in quantum dot sensitised solar cells

, , &
Pages 160-165 | Received 20 Mar 2015, Accepted 19 Apr 2015, Published online: 22 Feb 2016

References

  • Hossain M. I. and Alharbi F. H.: ‘Recent advances in alternative material photovoltaics’, Mater. Technol., 2013, 28, 88–97.
  • Oku T., Takeda A., Nagata A., Kidowaki H., Kumada K., Fujimoto K., Suzuki1 A., Akiyama T., Yamasaki Y. and O¯sawa E.: ‘Microstructures and photovoltaic properties of C60 based solar cells with copper oxides, CuInS2, phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton diffusion blocking layers’, Mater. Technol., 2013, 28, 21–39.
  • Zhou Y., Zhang S. Y., Zhu Z. P. and Li Y. K.: ‘Preparation and photocatalytic activity of Gd-doped TiO2 nanofibre’, J. Cent. South Univ. Technol., 2005, 12, 657–661.
  • Akin S. and Sonmezoglu S.: ‘Nanostructured TiO2 thin films: synthesis and characterisations’, Mater. Technol., 2012, 27, 342–349.
  • Wang H., Bai Y., Zhang H., Zhang Z., Li J. and Guo L.: ‘CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes’, J. Phys. Chem. C, 2010, 114C, 16451–16455.
  • Sonmezoglu S., Cankaya G. and Serin N.: ‘Influence of annealing temperature on structural, morphological and optical properties of nanostructured TiO2 thin films’, Mater. Technol., 2012, 27, 251–256.
  • Sönmezog˘lu S.: ‘Synthesis and characterisations of nanostructured TiO2-Te: CdO compound thin films’, Mater. Technol., 2014, 29, 3–7.
  • Valentin C. D., Pacchioni G. and Selloni A.: ‘Theory of carbon doping of titanium dioxide’, Chem. Mater., 2005, 17, 6656–6665.
  • Morikawa T., Asahi R., Ohwaki T., Aoki K. and Taga Y.: ‘Band-gap narrowing of titanium dioxide by nitrogen doping’, Jpn J. Appl. Phys., 2001, 40, L561.
  • Yella A., Lee H. W., Tsao H. N., Yi C. Y., Chandiran A. K. and Nazeeruddin Md K.: ‘Porphyrin-sensitized solar cells with cobalt (ii/iii)-based redox electrolyte exceed 12 percent efficiency’, Science, 2011, 334, 629–634.
  • Wu M. X., Wang Y. D., Lin X., Yu N. S., Wang L., Wang L. L., Hagfeldt A. and Ma T. L.: ‘Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes’, Phys. Chem. Chem. Phys., 2011, 13, 19298–19301.
  • Arjunan T. V. and Senthil T. S.: ‘Review: dye sensitised solar cells’, Mater. Technol., 2013, 28, 9–14.
  • Hosseinnezhad M., Gharanjig K. and Moradian S.: ‘Effect of anti-aggregation agent on photovoltaic performance of indoline sensitised solar cells’, Mater. Technol., 2015, 30, 189–192.
  • Justin Thomas K. R. and Baheti Abhishek: ‘Fluorene based organic dyes for dye sensitised solar cells: structure-property relationships’, Mater. Technol., 2013, 28, 71–87.
  • Ileperuma O. A.: ‘Gel polymer electrolytes for dye sensitized solar cells: a review’, Mater. Technol., 2013, 28, 65–70.
  • Zaban A., Mićić O. I., Gregg B. A. and Nozik A. J.: ‘Photosensitization of nanoporous TiO2 electrodes with InP quantum dots’, Langmuir, 1998, 14, 3153–3156.
  • Hoshino A., Fujioka K., Oku T., Suga M., Sasaki Y. F., Ohta T., Yasuhara M., Suzuki K. and Yamamoto K.: ‘Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification’, Nano Lett., 2004, 4, 2163–2169.
  • Günes S. and Sariciftci N. S.: ‘Hybrid solar cells’, Inorg. Chim. Acta, 2008, 361, 581–588.
  • Robel I., Kuno M. and Kamat P. V.: ‘Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles’, J. Am. Chem. Soc., 2007, 129, 4136–4137.
  • Lee H. J., Grätzel M. and Nazeeruddin M. K.: ‘PbS and CdS quantum dot-sensitized solid-state solar cells: ‘old concepts, new results’’, Adv. Funct. Mater., 2009, 19, 2735–2742.
  • Guijarro N., Lana-Villarreal T., Shen Q., Toyoda T. and Gómez R.: ‘Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: photoelectrochemical and carrier dynamics studies’, J. Phys. Chem. C, 2010, 114C, 21928–21937.
  • Mali S. S., Desai S. K., Kalagi S. S., Betty C. A., Bhosale P. N., Devan R. S., Ma Y. R. and Patil P. S.: ‘PbS quantum dot sensitized anatase TiO2 nanocorals for quantum dot-sensitized solar cell applications’, Dalton Trans., 2012, 41, 6130–6136.
  • Guijarro N., Lana-Villarreal T., Lutz T., Haque S. A. and Gomez R.: ‘Sensitization of TiO2 with PbSe quantum dots by SILAR: how mercaptophenol improves charge separation’, J. Phys. Chem. Lett., 2012, 3, 3367–3372.
  • Bang J. H. and Kamat P. V.: ‘Quantum dot sensitized solar cells. a tale of two semiconductor nanocrystals: CdSe and CdTe’, ACS Nano, 2009, 3, 1467–1476.
  • Razykov T. M., Amin N., Alghoul M., Ergashev B., Ferekides C. S., Goswami Y., Hakkulov M. K., Kouchkarov K. M., Sopian K., Sulaiman M. Y. and Ullal H. S.: ‘Revolutionary novel and low cost CMBD method for fabrication of CdTe absorber layer for use in thin film solar cells’, Mater. Technol., 2013, 28, 15–20.
  • Suryawanshi M. P., Agawane G. L., Bhosale S. M., Shin S. W., Patil P. S., Kim J. H. and Moholkar A. V.: ‘CZTS based thin film solar cells: a status review’, Mater. Technol., 2013, 28, 98–109.
  • Solís M., Rincón M. E., Calva J. C. and Alvarado G.: ‘Bismuth sulfide sensitized TiO2 arrays for photovoltaic applications’, Electrochim. Acta, 2013, 112, 159–163.
  • Pineda E., Nicho M. E., Nair P. K. and Hu H. L.: ‘Optoelectronic properties of chemically deposited Bi2S3 thin films and the photovoltaic performance of Bi2S3/P3OT solar cells’, Sol. Energy, 2012, 86, 1017–1022.
  • Shi L., Gu D., Li W., Han L., Wei H., Tu B. and Che R.: ‘Synthesis of monodispersed ultrafine Bi2S3 nanocrystals’, J. Alloys Compd, 2011, 509, 9382–9386.
  • Mahmoud S., Eid A. H. and Omar H.: ‘Optical characteristics of bismuth sulfide (Bi2S3) thin films’, Fizika A, 1997, 6A, 111–120.
  • Huang H. H., Chen J., Meng Y. Z., Yang X. Q., Zhang Mi. Z., Yu Y., Ma Z. Y. and Zhao Y. D.: ‘Synthesis and characterization of Bi2S3 composite nanoparticles with high X-ray absorption’, Mater. Res. Bull., 2013, 48, 3800–3804.
  • Peter L. M.: ‘The photoelectrochemical properties of anodic Bi2S3 films’, J. Electroanal. Chem., 1979, 98, 49–58.
  • Vogel R., Hoyer P. and Weller H.: ‘Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors’, J. Phys. Chem., 1994, 98, 3183–3188.
  • Peter L. M., Wijayantha K. G. U., Riley D. J. and Waggett J. P.: ‘Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2’, J. Phys. Chem. B, 2003, 107B, 8378–8381.
  • Zumeta-Dubé I., Ruiz-Ruiz V. F., Díaz D., Rodil-Posadas S. and Zeinert A.: ‘TiO2 sensitization with Bi2S3 quantum dots: the inconvenience of sodium ions in the deposition procedure’, J. Phys. Chem. C, 2014, 118C, 11495–11504.
  • Liu B. K., Wang D. J., Zhang Y., Fan H. M., Lin Y. H., Jiang T. F. and Xie T. F.: ‘Photoelectrical properties of Ag2S quantum dot-modified TiO2 nanorod arrays and their application for photovoltaic devices’, Dalton Trans., 2013, 42, 2232–2237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.