Publication Cover
Materials Technology
Advanced Performance Materials
Volume 31, 2016 - Issue 7
795
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Spider silk inspired materials and sustainability: perspective

&
Pages 384-399 | Received 30 Jun 2015, Accepted 24 Jul 2015, Published online: 26 Feb 2016

References

  • Viney C. and Bell F. I.: ‘Inspiration versus duplication with biomolecular fibrous materials: learning nature's lessons without copying nature's limitations’, Curr. Opin. Solid State Mater. Sci., 2004, 8, 165–171.
  • Denny M.: ‘The physical properties of spider's silk and their role in the design of orb-webs’, J. Exp. Biol., 1976, 65, 483–506.
  • Denny M. W.: ‘Silks – their properties and functions’ ‘The mechanical properties of biological materials’, 246–272; 1980, Cambridge, Cambridge University Press.
  • Gosline J., Denny M. and Demont M. E.: ‘Spider silk as rubber’, Nature, 1984, 309, 551–552.
  • Gosline J. M., DeMont M. E. and Denny M. W.: ‘The structure and properties of spider silk’, Endeavour, 1986, 10, 37–43.
  • Vollrath F. and Knight D. P.: ‘Liquid crystalline spinning of spider silk’, Nature, 2001, 410, 541–548.
  • Gosline J. M., Guerette P. A., Ortlepp C. S. and Savage K. N.: ‘Mechanical design of spider silk: from fibroin sequence to mechanical function’, J. Exp. Biol., 1999, 202, 3295–3303.
  • Benyus J.: ‘Biomimicry: innovation inspired by nature’, 1997, New York, William Morrow & Company.
  • Craig C. L., Bernard G. D. B. and Coddington J. A.: ‘Evolutionary shifts in the spectral properties of spider silks’, Evolution, 1994, 48, 287–296.
  • Huby N., Vié V., Beaufils S., Lefèvre T., Paquet-Mercier F., Pézolet M. and Bêche B.: ‘Native spider silk as a biological optical fiber’, Appl. Phys. Lett., 2013, 102, 123702.
  • Huang X., Liu G. and Wang X.: ‘New secrets of spider silk: exceptionally high thermal conductivity and its abnormal change under stretching’, Adv. Mater., 2012, 24, 1482–1486.
  • Zhang L., Chen T., Ban H. and Liu L.: ‘Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein’, Nanoscale, 2014, 6, 7786–7791.
  • Vollrath F. and Edmonds D.: ‘Consequences of electrical conductivity in an orb spider's capture web’, Naturwissenschaften, 2013, 100, 1163–1169.
  • Blackledge T. A. and Hayashi C. Y.: ‘Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775)’, J. Exp. Biol., 2006, 209, 2452–2461.
  • Vollrath F. and Porter D.: ‘Spider silk as archetypal protein elastomer’, Soft Matter, 2006, 2, 377–385.
  • Rising A., Nimmervol H., Grip S., Fernandez-Arias A., Storckenfeldt E., Knight D., Vollrath F. and Engström W.: ‘Spider silk proteins – mechanical property and gene sequence’, Zool. Sci., 2005, 22, 273–281.
  • Rousseau M. -E., Lefèvre T. and Pézolet M.: ‘Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders’, Biomacromolecules, 2009, 10, 2945–2953.
  • Lefèvre T., Boudreault S., Cloutier C. and Pézolet M.: ‘Diversity of molecular transformations involved in the formation of spider silks’, J. Mol. Biol., 2011, 405, 238–253.
  • Hayashi C. Y., Shipley N. H. and Lewis R. V.: ‘Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins’, Int. J. Biol. Macromol., 1999, 24, 271–275.
  • Hardy J. G. and Scheibel T.: ‘Composite materials based on silk proteins’, Prog. Polym. Sci., 2010, 35, 1093–1115.
  • Hu X., Cebe P., Weiss A. S., Omenetto F. and Kaplan D. L.: ‘Protein-based composite materials’, Mater. Today, 2012, 15, 208–215.
  • Omenetto F. G. and Kaplan D. L.: ‘New opportunities for an ancient material’, Science, 2010, 329, 528–531.
  • DiMarco R. L. and Heilshorn S. C.: ‘Multifunctional materials through modular protein engineering’, Adv. Mater., 2012, 24, 3923–3940.
  • Lefèvre T., Byette F., Marcotte I. and Auger M.: ‘Protein- and peptide-based materials: a source of inspiration for innovation’, in ‘Functional materials – for energy, sustainable development and biomedical sciences’, (ed. Gauvin R. et al.., 415–442; 2014, Berlin, De Gruyter.
  • Spiess K., Lammel A. and Scheibel T.: ‘Recombinant spider silk proteins for applications in biomaterials’, Macromol. Biosci., 2010, 10, 998–1007.
  • Lawrence B. D., Cronin-Golomb M., Georgakoudi I., Kaplan D. L. and Omenetto F. G.: ‘Bioactive silk protein biomaterial systems for optical devices’, Biomacromolecules, 2008, 9, 1214–1220.
  • Tao H., Kaplan D. L. and Omenetto F. G.: ‘Silk materials – a road to sustainable high technology’, Adv. Mater., 2012, 24, 2824–2837.
  • Scheibel T.: ‘Protein fibers as performance proteins: new technologies and applications’, Curr. Opin. Biotechnol., 2005, 16, 427–433.
  • Wang X., Kim H. J., Wong C., Vepari C., Matsumoto A. and Kaplan D. L.: ‘Fibrous proteins and tissue engineering’, Mater. Today, 2006, 9, 44–53.
  • Kasoju N. and Bora U.: ‘Silk fibroin in tissue engineering’, Adv. Healthcare Mater., 2012, 1, 393–412.
  • Vepari C. and Kaplan D. L.: ‘Silk as a biomaterial’, Prog. Polym. Sci., 2007, 21, 991–1007.
  • Hardy J. G., Egaña A. L. and Scheibel T. R.: ‘Engineered spider silk protein-based composites for drug delivery’, Macromol. Biosci., 2013, 13, 1431–1437.
  • Kundu B., Kurland N. E., Bano S., Patra C., Engel F. B., Yadavalli V. K. and Kundu S. C.: ‘Silk proteins for biomedical applications: bioengineering perspectives’, Prog. Polym. Sci., 2014, 39, 251–267.
  • Altman G. H., Diaz F., Jakuba C., Calabro T., Horan R. L., Chen T., Lu H., Richmond J. and Kaplan D. L.: ‘Silk-based biomaterials’, Biomaterials, 2003, 24, 401–416.
  • Jiang L. and Xia Q.: ‘The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori’, Insect Biochem. Mol. Biol., 2014, 48, 1–7.
  • Hardy J. G., Römer L. M. and Scheibel T. R.: ‘Polymeric materials based on silk proteins’, Polymer, 2008, 49, 4309–4327.
  • Rabotyagova O. S., Cebe P. and Kaplan D. L.: ‘Protein-based block copolymers’, Biomacromolecules, 2011, 12, 269–289.
  • Vollrath F., Porter D. and Holland C.: ‘The science of silks’, MRS Bull., 2014, 38, 73–80.
  • Millennium Ecosystem Assessment: ‘Ecosystems and human well-being: a framework for assessment’, 2005, Washington, DC, Island Press.
  • Rockström J., Steffen W., Noone K., Persson Å., Chapin F. S., Lambin E. F., Lenton T. M., Scheffer M., Folke C., Schellnhuber H. J., Nykvist B., de Wit C. A., Hughes T., van der Leeuw S., Rodhe H., Sörlin S., Snyder P. K., Costanza R., Svedin U., Falkenmark M., Karlberg L., Corell R. W., Fabry V. J., Hansen J., Walker B., Liverman D., Richardson K., Crutzen P. and Foley J. A.: ‘A safe operating space for humanity’, Nature, 2009, 461, 472–475.
  • SCBD: ‘Global biodiversity outlook 3’, Secretariat of the Convention on Biological Diversity, Montréal, Que., Canada 2010.
  • Steffen W., Grinevald J., Crutzen P. and McNeill J.: ‘The Anthropocene: conceptual and historical perspectives’, Philos. Trans. R. Soc. A, 2011, 369A, 842–867.
  • Barnosky A. D., Hadly E. A., Bascompte J., Berlow E. L., Brown J. H., Fortelius M., Getz W. M., Harte J., Hastings A., Marquet P. A., Martinez N. D., Mooers A., Roopnarine P., Vermeij G., Williams J. W., Gillespie R., Kitzes J., Marshall C., Matzke N., Mindell D. P., Revilla E. and Smith A. B.: ‘Approaching a state shift in Earth's biosphere’, Nature, 2012, 486, 52–58.
  • PNUE: ‘Global environment outlook 5’, United Nations Environment Programme, Valleta, Malta 2012.
  • Intergovernmental Panel on Climate Change: ‘Climate change 2013 – the physical science basis’, United Nations Environment Programme, 2013.
  • MacKenzie F. T.: ‘Our changing planet – an introduction to Earth system science and global environmental change’, 2011, Boston, MA, Prentice Hall.
  • Steffen W., Richardson K., Rockstrom J., Cornell S. E., Fetzer I., Bennett E. M., Biggs R., Carpenter S. R., de Vries W., de Wit C. A., Folke C., Gerten D., Heinke J., Mace G. M., Persson L. M., Ramanathan V., Reyers B. and Sorlin S.: ‘Planetary boundaries: guiding human development on a changing planet’, Science, 2015, 347, 1259855.
  • Apelian D.: ‘Materials science and engineering's pivotal role in sustainable development for the 21st century’, MRS Bull., 2012, 37, 318–323.
  • Green M. L., Espinal L., Traversa E. and Amis E. J.: ‘Materials for sustainable development’, MRS Bull., 2012, 37, 303–308.
  • LeSar R., Chen K. C. and Apelian D.: ‘Teaching sustainable development in materials science and engineering’, MRS Bull., 2012, 37, 449–454.
  • Green M. L.: ‘Materials science in the Anthropocene: MRS gets serious about sustainable development’, MRS Bull., 2014, 39, 567–569.
  • Swanson B. O., Blackledge T. A. and Hayashi C. Y.: ‘Spider capture silk: performance implications of variation in an exceptional biomaterial’, J. Exp. Biol. A, 2007, 307A, 654–666.
  • Sensenig A., Agnarsson I. and Blackledge T. A.: ‘Behavioural and biomaterial coevolution in spider orb webs’, J. Evol. Biol., 2010, 23, 1839–1856.
  • Emile O., Le Floch A. and Vollrath F.: ‘Shape memory in spider draglines’, Nature, 2006, 440, 621.
  • Kumar B., Thakur A., Panda B. and Singh K. P.: ‘Optically probing torsional superelasticity in spider silks’, Appl. Phys. Lett., 2013, 103, 201910.
  • Work R. W.: ‘Mechanisms of major ampullate silk fiber formation by orb-web-spinning spiders’, Trans. Am. Microsc. Soc., 1977, 96, 170–189.
  • Work R. W. and Morosoff N.: ‘A physico-chemical study of the supercontraction of spider major ampullate silk fibers’, Text. Res. J., 1982, 52, 349–356.
  • Plaza G. R., Guinea G. V., Pérez-Rigueiro J. and Elices M.: ‘Thermo-hygro-mechanical behavior of spider dragline silk: glassy and rubbery states’, J. Polym. Sci. B, 2006, 44B, 994–999.
  • Work R. W.: ‘A comparative study of the supercontraction of major ampullate silk fibers of orb-web-building spiders (Aranae)’, J. Arachnol., 1981, 9, 299–308.
  • Work R. W.: ‘Dimensions, birefringences, and force-elongation behavior of major and minor ampullate silk fibers from orb-web-spinning spiders – effects of wetting on these properties’, Text. Res. J., 1977, 47, 650–662.
  • Pérez-Rigueiro J., Elices M. and Guinea G. V.: ‘Controlled supercontraction tailors the tensile behaviour of spider silk’, Polymers, 2003, 44, 3733–3736.
  • Liu Y., Sponner A., Porter D. and Vollrath F.: ‘Proline and processing of spider silks’, Biomacromolecules, 2008, 9, 116–121.
  • Plaza G. R., Corsini P., Pérez-Rigueiro J., Marsano E., Guinea G. V. and Elices M.: ‘Effect of water on Bombyx mori regenerated silk fibers and its application in modifying their mechanical properties’, J. Appl. Polym. Sci., 2008, 109, 1793–1801.
  • Guinea G. V., Elices M., Plaza G. R., Perea G. B., Daza R., Riekel C., Agulló-Rueda F., Hayashi C. Y., Zhao Y. and Pe´rez-Rigueiro J.: ‘Minor ampullate silks from Nephila and Argiope spiders: tensile properties and microstructural characterization’, Biomacromolecules, 2012, 13, 2087–2098.
  • Viney C.: ‘From natural silks to new polymer fibres’, J. Text. Inst., 2000, 91, 2–23.
  • Hakimi O., Knight D. P., Vollrath F. and Vadgama P.: ‘Spider and mulberry silkworm silks as compatible biomaterials’, Composites B, 2007, 38B, 324–337.
  • Heidebrecht A. and Scheibel T.: ‘Recombinant production of spider silk proteins’, in ‘Advances in applied microbiology’, (ed. Sariaslani S. et al.., 115–153; 2013, Amsterdam, Elsevier.
  • Agnarsson I., Dhinojwala A., Sahni V. and Blackledge T. A.: ‘Spider silk as a novel high performance biomimetic muscle driven by humidity’, J. Exp. Biol., 2009, 212, 1990–1994.
  • Hose G. C., James J. M. and Gray M. R.: ‘Spider webs as environmental indicators’, Environ. Pollut., 2002, 120, 725–733.
  • Xiao-Li S., Yu P., Hose G. C., Jian C. and Feng-Xiang L.: ‘Spider webs as indicators of heavy metal pollution in air’, Bull. Environ. Contam. Toxicol., 2006, 76, 271–277.
  • Samu F., Matthews G. A., Lake D. and Vollrath F.: ‘Spider webs are efficient collectors of agrochemical spray’, Pept. Sci., 1992, 36, 47–51.
  • Widhe M., Johansson J., Hedhammar M. and Rising A.: ‘Current progress and limitations of spider silk for biomedical applications’, Biopolymers, 2012, 97, 468–478.
  • Wang Y., Hyeon-Joo K., Vunjak-Novakovic G. and Kaplan D. L.: ‘Stem cell-based tissue engineering with silk biomaterials’, Biomaterials, 2006, 27, 6064–6082.
  • Kuhbier J. W., Allmeling C., Reimers K., Hillmer A., Kasper C., Menger B., Brandes G., Guggenheim M. and Vogt P. M.: ‘Interactions between spider silk and cells – NIH/3T3 fibroblasts seeded on miniature weaving frames’, Plos One, 2010, 5, e12032.
  • Allmeling C., Jokuszies A., Reimers K., Kall S. and Vogt P. M.: ‘Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit’, J. Cell. Mol. Med., 2006, 10, 770–777.
  • Allmeling C., Jokuszies A., Reimers K., Kall S., Choi C. Y., Brandes G., Kasper C., Scheper T., Guggenheim M. and Vogt P. M.: ‘Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration’, Cell Prolif., 2008, 41, 408–420.
  • Cao B. and Mao C.: ‘Oriented nucleation of hydroxylapatite crystals on spider dragline silks’, Langmuir, 2007, 23, 10701–10705.
  • Leal-Egaña A., Lang G., Mauerer C., Wickinghoff J., Weber M., Geimer S. and Scheibel T.: ‘Interactions of fibroblasts with different morphologies made of an engineered spider silk protein’, Adv. Eng. Mater., 2012, 14, B67–B75.
  • Widhe M., Bysell H., Nystedt S., Schenning I., Malmsten M., Johansson J., Rising A. and Hedhammar M.: ‘Recombinant spider silk as matrices for cell culture’, Biomaterials, 2010, 31, 9575–9585.
  • Lewicka M., Hermanson O. and Rising A. U.: ‘Recombinant spider silk matrices for neural stem cell cultures’, Biomaterials, 2012, 22, 7712–7717.
  • Gellynck K., Verdonk P. C. M., van Nimmen E., Almqvist K. F., Tom G., Schoukens G., Langenhove L. V., Kiekens P., Mertens J. and Verbruggen G.: ‘Silkworm and spider silk scaffolds for chondrocyte support’, J. Mater. Sci.: Mater. Med., 2008, 19, 3399–3409.
  • Agnarsson I., Boutry C. and Blackledge T. A.: ‘Spider silk aging: Initial improvement in a high performance material followed by slow degradation’, J. Exp. Biol. A, 2008, 309A, 494–504.
  • Gellynck K., Verdonk P., Forsyth R., Almqvist K. F., van Nimmen E., Gheysens T., Mertens J., Van Langenhove L., Kiekens P. and Verbruggen G.: ‘Biocompatibility and biodegradability of spider egg sac silk’, J. Mater. Sci.: Mater. Med., 2008, 19, 2963–2970.
  • Kluge J. A., Thurber A., Leisk G. G., Kaplan D. L. and Dorfmann A. L.: ‘A model for the stretch-mediated enzymatic degradation of silk fibers’, J. Mech. Behav. Biomed. Mater., 2010, 3, 538–547.
  • Hu Y., Zhang Q., You R., Wang L. and Li M.: ‘The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds’, Adv. Mater. Sci. Eng., 2012, 2012, 185905.
  • Hennecke K., Redeker J., Kuhbier J. W., Strauss S., Allmeling C., Kasper C., Reimer K. and Vogt P. M.: ‘Bundles of spider silk, braided into sutures, resist basic cyclic tests: potential use for flexor tendon repair’, Plos One, 2013, 8, e61100.
  • Hermanson K. D., Huemmerich D., Scheibel T. and Bausch A. R.: ‘Engineered microcapsules fabricated from reconstituted spider silk’, Adv. Mater., 2007, 19, 1810–1815.
  • Seib F. P., Jones G. T., Rnjak-Kovacina J., Lin Y. and Kaplan D. L.: ‘pH-Dependent anticancer drug release from silk nanoparticles’, Adv. Healthcare Mater., 2013, 2, 1606–1611.
  • Lammel A. S., Hu X., Park S. -H., Kaplan D. L. and Scheibel T. R.: ‘Controlling silk fibroin particle features for drug delivery’, Biomaterials, 2010, 31, 4583–4591.
  • Asakura T., Saotome T., Aytemiz D., Shimokawatoko H., Yagi T., Fukayama T., Ozaib Y. and Tanaka R.: ‘Characterization of silk sponge in the wet state using 13C solid state NMR for development of a porous silk vascular graft with small diameter’, RSC Adv., 2014, 4, 4427–4434.
  • Shen W., Chen J., Yin Z., Chen X., Liu H., Heng B. C., Chen W. and Ouyang H. -W.: ‘Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair’, Cell Transplant., 2012, 21, 943–958.
  • Fang Q., Chen D., Yang Z. and Li M.: ‘In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds’, Mater. Sci. Eng. C, 2009, C29, 1527–1534.
  • Chen J., Altman G. H., Karageorgiou V., Horan R. L., Collette A., Volloch V., Colabro T. and Kaplan D. L.: ‘Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers’, J. Biomed. Mater. Res., 2003, 67, 559–570.
  • Ghosh S., Parker S. T., Wang X., Kaplan D. L. and Lewis J. A.: ‘Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications’, Adv. Funct. Mater., 2008, 18, 1883–1889.
  • Bini E., Wong Po Foo C., Huang J., Karageorgiou V., Kitchel B. and Kaplan D. L.: ‘RGD-functionalized bioengineered spider dragline silk biomaterial’, Biomacromolecules, 2006, 7, 3139–3145.
  • Gomes S., Numata K., Leonor I. B., Mano J. F., Reis R. L. and Kaplan D. L.: ‘AFM study of morphology and mechanical properties of a chimeric spider silk and bone sialoprotein protein for bone regeneration’, Biomacromolecules, 2011, 12, 1675–1685.
  • Kim H. J., Ki C. S. and Park Y. H.: ‘Effect of RGDS and KRSR peptides immobilized on silk fibroin nanofibrous mats for cell adhesion and proliferation’, Macromol. Res., 2010, 18, 442–448.
  • Vasconcelos A., Gomes A. C. and Cavaco-Paulo A.: ‘Novel silk fibroin/elastin wound dressings’, Acta Biomater., 2012, 8, 3049–3060.
  • Kanokpanont S., Damrongsakkul S., Ratanavaraporn J. and Aramwit P.: ‘An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing’, Int. J. Pharm., 2012, 436, 141–153.
  • Wharram S. E., Zhang X., Kaplan D. L. and McCarthy S. P.: ‘Electrospun silk material systems for wound healing’, Macromol. Biosci., 2010, 10, 246–257.
  • Parker S. T., Domachuk P., Amsden J., Bressner J., Lewis J. A., Kaplan D. L. and Omenetto F. G.: ‘Biocompatible silk printed optical waveguides’, Adv. Mater., 2009, 21, 2411–2415.
  • Kim D. -H., Kim Y. -S., Amsden J., Panilaitis B., Kaplan D. L., Omenetto F. G., Zakin M. R. and Rogers J. A.: ‘Silicon electronics on silk as a path to bioresorbable, implantable devices’, Appl. Phys. Lett., 2009, 95, 133701.
  • Kim D.-H., Viventi J., Amsden J. J., Xiao J., Vigeland L., Kim Y.-S., Blanco J. A., Panilaitis B., Frechette E. S., Contreras D., Kaplan D. L., Omenetto F. G., Huang Y., Hwang K. -C., Zakin M. R., Litt B. and Rogers J. A.: ‘Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics’, Nat. Mater., 2010, 9, 511–517.
  • Kim S., Mitropoulos A. N., Spitzberg J. D., Tao H., Kaplan D. L. and Omenetto F. G.: ‘Silk inverse opals’, Nat. Photonics, 2012, 6, 818–823.
  • Tao H., Brenckle M. A., Yang M., Zhang J., Liu M., Siebert S. M., Averitt R. D., Mannoor M. S., McAlpine M. C., Rogers J. A., Kaplan D. L. and Omenetto F. G.: ‘Silk-based conformal, adhesive, edible food sensors’, Adv. Mater., 2012, 24, 1067–1072.
  • Hayashi C. Y. and Lewis R. V.: ‘Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks’, J. Biol. Mol., 1998, 275, 773–784.
  • Hu X., Kohlers K., Falick A. M., Moore A. M. F., Jones P. R., Sparkman O. D. and Vierra C.: ‘Egg case protein-1’, J. Biol. Chem., 2005, 280, 21220–21230.
  • Blasingame E., Tuton-Blasigame T., Larkin L., Falick A. M., Zhao L., Fong J., Vaidyanathan V., Visperas A., Geurts P., Hu X., La Mattina C. and Vierra C.: ‘Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus’, J. Biol. Chem., 2009, 284, 29097–29108.
  • Bittencourt D., Oliveira P. F., Prosdocimi F. and Rech E. L.: ‘Protein families, natural history and biotechnological aspects of spider silk’, Genet. Mol. Res., 2012, 11, 2360–2380.
  • Kümmerlen J., van Beek J. D., Vollrath F. and Meier B. H.: ‘Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance’, Macromolecules, 1996, 29, 2920–2928.
  • van Beek J. D., Hess S., Vollrath F. and Meier B. H.: ‘The molecular structure of spider dragline silk: Folding and orientation of the protein backbone’, Proc. Natl Acad. Sci., 2002, 99, 10266–10271.
  • Lefèvre T., Rousseau M. -E. and Pézolet M.: ‘Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy’, Biophys. J., 2007, 92, 2885–2895.
  • Winkler S., Szela S., Avtges P., Valluzzi R., Kirschner D. A. and Kaplan D. L.: ‘Designing recombinant spider silk proteins to control assembly’, Int. J. Biol. Macromol., 1999, 24, 265–270.
  • Eles P. T. and Michal C. A.: ‘A DECODER NMR study of backbone orientation in Nephila clavipes dragline silk under varying strain and draw rate’, Biomacromolecules, 2004, 5, 661–665.
  • Termonia Y.: ‘Molecular modeling of spider silk elasticity’, Macromolecules, 1994, 27, 7378–7381.
  • Ene R., Papadopoulos P. and Kremer F.: ‘Combined structural model of spider dragline silk’, Soft Matter, 2009, 5, 4568–4574.
  • Simmons A. H., Michal C. A. and Jelinski L. W.: ‘Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk’, Science, 1996, 271, 84–87.
  • Grubb D. T. and Jelinski L. W.: ‘Fiber morphology of spider silk: the effects of tensile deformation’, Macromolecules, 1997, 30, 2860–2867.
  • Thiel B. L., Guess K. B. and Viney C.: ‘Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk’, Biopolymers, 1997, 41, 703–719.
  • Fossey S. A. and Tripathy S.: ‘Atomistic modeling of interphases in spider silk fibers’, Int. J. Biol. Macromol., 1999, 24, 119–125.
  • Holland G. P., Lewis R. V. and Yarger J. L.: ‘WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk’, J. Am. Chem. Soc., 2004, 126, 5867–5872.
  • Miller L. D., Putthanarat S., Eby R. K. and Adams W. W.: ‘Investigation of the nanofibrillar morphology in silk fibers by small angle X-ray scattering and atomic force microscopy’, Int. J. Biol. Macromol., 1999, 24, 159–165.
  • Putthanarat S., Stribeck N., Fossey S. A., Eby R. K. and Adams W. W.: ‘Investigation of the nanofibrils in silk fibers’, Polymer, 2000, 41, 7735–7747.
  • Riekel C. and Vollrath F.: ‘Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments’, Int. J. Biol. Macromol., 2001, 29, 203–210.
  • Oroudjev E., Soares J., Arcidiacono S., Thompson J. B., Fossey S. A. and Hansma H. G.: ‘Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy’, Proc. Natl. Acad. Sci., 2002, 99, 6460–6465.
  • Sapede D., Seydel T., Forsyth V. T., Koza M. M., Schweins R., Vollrath F. and Riekel C.: ‘Nanofibrillar structure and molecular mobility in spider dragline silk’, Macromolecules, 2005, 38, 8447–8453.
  • Vollrath F., Holtet T., Thogersen H. C. and Frische S.: ‘Structural organization of spider silk’, Proc. R. Soc. Lond. B, 1996, 263B, 147–151.
  • Li S. F. Y., McGhie A. J. and Tang S. L.: ‘New internal structure of spider dragline silk revealed by atomic force microscopy’, Biophys. J., 1994, 66, 1209–1212.
  • Du N., Liu X. Y., Narayanan J., Li L., Lim M. L. M. and Li D.: ‘Design of superior spider silk: from nanostructure to mechanical properties’, Biophys. J., 2006, 91, 4528–4535.
  • Frische S., Maunsbach A. B. and Vollrath F.: ‘Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy’, J. Microsc., 1998, 189, 64–70.
  • Sponner A., Unger E., Grosse F. and Weisshart K.: ‘Differential polymerization of the two main protein components of dragline silk during fibre spinning’, Nat. Mater., 2005, 4, 772–775.
  • Rousseau M. E., Hernández Cruz D., West M. M., Hitchcock A. P. and Pézolet M.: ‘Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy’, J. Am. Chem. Soc., 2007, 129, 3897–3905.
  • Keten S. and Buehler M. J.: ‘Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale’, Nanoletter, 2008, 8, 743–748.
  • Keten S., Xu Z., Ihle B. and Buehler M. J.: ‘Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk’, Nat. Mater., 2010, 9, 359–367.
  • Yu S., Zhang R., Wu Q., Chen T. and Sun P.: ‘Bio-inspired high-performance and recyclable cross-linked polymers’, Adv. Mater., 2013, 25, 4912–4917.
  • Xu G., Gong L., Yang Z. and Liu X. Y.: ‘What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures’, Soft Matter, 2014, 10, 2116–2123.
  • Porter D., Guan J. and Vollrath F.: ‘Spider silk: super material or thin fibre?’, Adv. Mater., 2013, 25, 1275–1279.
  • Richard-Lacroix M. and Pellerin C.: ‘Molecular orientation in electrospun fibers: from mats to single fibers’, Macromolecules, 2013, 46, 9473–9493.
  • Marsh R. E., Corey R. B. and Pauling L.: ‘An investigation of the structure of silk fibroin’, Biochim. Biophys. Acta, 1955, 16, 1–34.
  • Warwicker J. O.: ‘Comparative studies of fibroins. II: crystal structure of various fibroins’, J. Mol. Biol., 1960, 2, 350–371.
  • Lotz B. and Cesari F. C.: ‘Chemical structure and the crystalline structures of Bombyx mori silk fibroin’, Biochimie, 1979, 61, 205–214.
  • Gillespie B., Viney C. and Yager P.: ‘Raman spectroscopic analysis of the secondary structure of spider silk fiber’, ACS Sympos. Ser., 1994, 544, 155–167.
  • Simmons A., Ray E. and Jelinski L. W.: ‘Solid-state 13C NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions’, Macromolecules, 1994, 27, 5235–5237.
  • Liivak O., Flores A., Lewis R. V. and Jelinski L. W.: ‘Conformation of the polyalanine repeats in minor ampullate gland silk of the spider Nephila clavipes’, Macromolecules, 1997, 30, 7127–7130.
  • Parkhe A. D., Seeley S. K., Gardner K., Thompson L. and Lewis R. V.: ‘Structural studies of spider silk proteins in the fiber’, J. Mol. Recognit., 1997, 10, 1–6.
  • Cloutier I., Leclerc J., Lefèvre T. and Auger M.: ‘Solid-state nuclear magnetic resonance (NMR) spectroscopy reveals distinctive protein dynamics in closely related spider silks’, Can. J. Chem., 2011, 89, 1047–1054.
  • Lefèvre T. and Pézolet M.: ‘Unexpected β-sheets and molecular orientation in flagelliform spider silk as revealed by Raman spectromicroscopy’, Soft Matter, 2012, 8, 6350–6357.
  • Kojić N., Bico J., Clasen C. and McKinley G. H.: ‘Ex vivo rheology of spiders’, J. Exp. Biol., 2006, 209, 4355–4362.
  • Asakura T., Umemura K., Nakazawa Y., Hirose H., Higham J. and Knight D.: ‘Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori’, Biomacromolecules, 2007, 8, 175–181.
  • Lefèvre T., Boudreault S., Cloutier C. and Pézolet M.: ‘Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders’, Biomacromolecules, 2008, 9, 2399–2407.
  • Knight D. P., Knight M. M. and Vollrath F.: ‘Beta transition and stress-induced phase separation in the spinning of spider dragline silk’, Int. J. Biol. Macromol., 2000, 27, 205–210.
  • Vollrath F., Knight D. P. and Hu X. W.: ‘Silk productrion in a spider involves acid bath treatment’, Proc. R. Soc. Lond. B, 1998, 265B, 817–820.
  • Madsen B., Shao Z. Z. and Vollrath F.: ‘Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual’, Int. J. Biol. Macromol., 1999, 24, 301–306.
  • Vollrath F.: ‘Biology of spider silk’, Int. J. Biol. Macromol., 1999, 24, 81–88.
  • Blamires S. J., Wu C. -L. and Tso I. -M.: ‘Variation in protein intake induces variation in spider silk expression’, Plos One, 2012, 7, e31626.
  • Zax D. B., Armanios D. E., Horak S., Malowniak C. and Yang Z.: ‘Variation of mechanical properties with amino acid content in the silk of Nephila clavipes’, Biomacromolecules, 2004, 5, 732–738.
  • Knight D. P. and Vollrath F.: ‘Liquid crystals and flow elongation in a spider's silk production line’, Proc. R. Soc. Lond. B, 1999, 266B, 519–523.
  • Hijirida D. H., Gian Do K., Michal C., Wong S., Zax D. and Jelinski L.: ‘13C NMR of Nephila clavipes major ampullate silk gland’, Biophys. J., 1996, 71, 3442–3447.
  • Chen X., Knight D. P. and Vollrath F.: ‘Rheological characterization of Nephila spidroin solution’, Biomacromolecules, 2002, 3, 644–648.
  • Kerkam K., Viney C., Kaplan D. and Lombard S.: ‘Liquid crystallinity of natural silk secretions’, Nature, 1991, 349, 596–598.
  • Willcox P. J., Gido S. P., Muller W. and Kaplan D. L.: ‘Evidence of a cholesteric liquid crystalline phase in natural silk spinning process’, Macromolecules, 1996, 29, 5106–5110.
  • Knight D. P. and Vollrath F.: ‘Changes in element composition along the spinning duct in a Nephila spider’, Naturwissenschaften, 2001, 88, 179–182.
  • Dicko C., Vollrath F. and Kenney J. M.: ‘Spider silk protein refolding is controlled by changing pH’, Biomacromolecules, 2004, 5, 704–710.
  • Andersson M., Chen G., Otikovs M., Landreh M., Nordling K., Kronqvist N., Westermark P., Joörnvall H., Knight S., Ridderstråle Y., Holm L., Meng Q., Jaudzems K., Chesler M., Johansson J. and Rising A.: ‘Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains’, Plos One, 2014, 12, e1001921.
  • Chen X., Shao Z. and Vollrath F.: ‘The spinning processes for spider silk’, Soft Matter, 2006, 2, 448–451.
  • Terry A. E., Knight D. P., Porter D. and Vollrath F.: ‘pH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm’, Biomacromolecules, 2004, 5, 768–772.
  • Dicko C., Kenney J. M., Knight D. and Vollrath F.: ‘Transition to a β-sheet-rich structure in spidroin in vitro: the effects of pH and cations’, Biochemistry, 2007, 43, 14080–14087.
  • Leclerc J., Lefèvre T., Pottier F., Morency L. -P., Lapointe-Verreault C., Gagné S. M. and Auger M.: ‘Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution’, Biopolymers, 2012, 97, 337–346.
  • Leclerc J., Lefèvre T., Gauthier M., Gagné S. M. and Auger M.: ‘Hydrodynamical properties of recombinant spider silk proteins: effects of pH, salts and shear, and implications for the spinning process’, Biopolymers, 2013, 99, 582–593.
  • Eisoldt L., Thamm C. and Scheibel T.: ‘The role of terminal domains during storage and assembly of spider silk proteins’, Biopolymers, 2012, 97, 355–361.
  • Askarieh G., Hedhammar M., Nordling K., Saenz A., Casals C., Rising A., Johansson J. and Knight S. D.: ‘Self-assembly of spider silk proteins is controlled by a pH-sensitive relay’, Nature, 2010, 465, 236–238.
  • Gauthier M., Leclerc J., Lefèvre T., Gagné S. M. and Auger M.: ‘Effect of pH on the structure of the recombinant C-terminal domain of Nephila clavipes dragline silk protein’, Biomacromolecules, 2014, 15, 4447–4454.
  • Hagn F., Eisoldt L., Hardy J. G., Vendrely C., Coles M., Scheibel T. and Kessler H.: ‘A conserved spider silk domain acts as a molecular switch that controls fibre assembly’, Nature, 2010, 465, 239–242.
  • Craig C. L., Hsu M., Kaplan D. and Pierce N. E.: ‘A comparison of the composition of silk proteins produced by spiders and insects’, Int. J. Biol. Macromol., 1999, 24, 109–118.
  • Holland C., Vollrath F., Ryan A. J. and Mykhaylyk O. O.: ‘Silk and synthetic polymers: reconciling 100 degrees of separation’, Adv. Mater., 2012, 24, 105–109.
  • Shao Z. and Vollrath F.: ‘Surprising strength of silkworm silk’, Nature, 2002, 418, 741.
  • Plaza G. R., Corsin P., Marsano E., Pérez-Rigueiro J., Biancotto L., Elices M., Riekel C., Rueda F. A., Gallardo E., Calleja J. M. and Guinea G. V.: ‘Old silks endowed with new properties’, Macromolecules, 2009, 42, 8977–8982.
  • Blamires S. J., Wu C. -L., Blackledge T. A. and Tso I. -M.: ‘Post-secretion processing influences spider silk performance’, J.R. Soc. Interface, 2012, 9, 2479–2487.
  • Seidel A., Liivak O., Calve S., Adaska J., Ji G., Yang Z., Grubb D., Zax D. B. and Jelinski L. W.: ‘Regenerated spider silk: processing, properties, and structure’, Macromolecules, 2000, 33, 775–780.
  • Shao Z., Vollrath F., Yang Y. and Thøgersen H. C.: ‘Structure and behavior of regenerated spider silk’, Macromolecules, 2003, 36, 1157–1161.
  • Seidel A., Liivak O. and Jelinski L. W.: ‘Artificial spinning of spider silk’, Macromolecules, 1998, 31, 6733–6736.
  • Arcidiacono S., Mello C. M., Butler M., Welsh E., Soares J. W., Allen A., Ziegler D., Laue T. and Chase S.: ‘Aqueous processing and fiber spinning of recombinant spider silks’, Macromolecules, 2002, 35, 1262–1266.
  • Fu C., Shao Z. Z. and Vollrath F.: ‘Animal silks: their structure, properties and artificial production’, Chem. Comm., 2009, 43, 6515–6529.
  • Sashina E. S., Bochek A. M., Novoselov M. N. P. and Kirichenko D. A.: ‘Structure and solubility of natural ailk fibroin’, Russ. J. Appl. Chem., 2006, 79, 869–876.
  • Yamada H., Nakao H., Takasu Y. and Tsubouchi K.: ‘Preparation of undegraded native molecular fibroin solution from silkworm cocoons’, Mater. Sci. Eng. C, 2001, C14, 41–46.
  • Cho H. J., Ki C. S., Oh H., Lee K. H. and Um I. C.: ‘Molecular weight distribution and solution properties of silk fibroins with different dissolution conditions’, Int. J. Biol. Macromol., 2012, 51, 336–341.
  • Rising A., Widhe M., Johansson J. and Hedhammar M.: ‘Spider silk proteins: recent advances in recombinant production, structure–function relationships and biomedical applications’, Cell. Mol. Life Sci., 2011, 68, 169–184.
  • Trabbic K. A. and Yager P.: ‘Comparative structural characterization of naturally- and synthetically-spun fibers of Bombyx mori fibroin’, Macromolecules, 1998, 31, 462–471.
  • Liivak O., Blye A., Shah N. and Jelinski L. W.: ‘A microfabricated wet-spinning apparatus to spin fibers of silk proteins. Structure–property correlations’, Macromolecules, 1998, 31, 2947–2951.
  • Ha S. -W., Tonelli A. E. and Hudson S. M.: ‘Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning’, Biomacromolecules, 2005, 6, 1722–1731.
  • Jelinski L. W., Blye A., Liivak O., Michal C., LaVerde G., Seidel A., Shah N. and Yang Z.: ‘Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk’, Int. J. Biol. Macromol., 1999, 24, 197–201.
  • Lazaris A., Arcidianacono S., Huang Y., Zhou J. -F., Duguay F., Chretien N., Welsh E. A., Soares J. W. and Karatzas C. N.: ‘Spider silk fibers spun from soluble recombinant silk produced in mamalian cells’, Science, 2002, 18, 472–476.
  • Yan J., Zhou G., Knight D. P., Shao Z. and Chen X.: ‘Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters’, Biomacromolecules, 2010, 11, 1–5.
  • Xie F., Zhang H., Shao H. and Hu X.: ‘Effect of shearing on formation of silk fibers from regenerated Bombyx mori fibroin aqueous solution’, Int. J. Biol. Macromol., 2006, 38, 284–288.
  • Wei W., Zhang Y., Shao H. and Hu X.: ‘Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution’, J. Mater. Res., 2011, 26, 1100–1106.
  • Wei W., Zhang Y., Zhao Y., Shao H. and Hu X.: ‘Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: post-treatment agent and method’, Mater. Des., 2012, 36, 816–822.
  • Kinahan M. E., Filippidi E., Köster S., Hu X., Evans H. M., Pfohl T., Kaplan D. L. and Wong J.: ‘Tunable silk: using microfluidics to fabricate silk fibers with controllable properties’, Biomacromolecules, 2011, 12, 1504–1511.
  • Renberg B., Andersson-Svahna H. and Hedhammar M.: ‘Mimicking silk spinning in a microchip’, Sens. Actuators, 2014, 195, 404–408.
  • Martel A., Burghammer M., Davies R. J., Di Cola E., Vendrely C. and Riekel C.: ‘Silk fiber assembly studied by synchrotron radiation SAXS/WAXS and Raman spectroscopy’, J. Am. Chem. Soc., 2008, 130, 17070–17074.
  • Rammensee S., Slotta U., Scheibel T. and Baush A. R.: ‘Assembly mechanism of recombinant spider silk proteins’, Proc. Natl Acad. Sci. USA, 2008, 105, 6590–6595.
  • Martel A., Burghammer M., Davies R. J., DiCola E., Panine P., Salmon J.-B. and Riekel C.: ‘A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small- and wide-angle X-ray scattering’, Biomicrofluidics, 2008, 2, 024104.
  • Teulé F., Miaob Y.-G., Sohn B.-H., Kim Y.-S., Hull J. J., Fraser J., Malcolm J., Lewis R. V. and Jarvis D. L.: ‘Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties’, Proc. Natl Acad. Sci., 2012, 109, 923–928.
  • Elices M., Guinea G. V., Plaza G. R., Karatzas C. N., Riekel C., Agullo-Rueda F., Daza R. and Pérez-Rigueiro J.: ‘Bioinspired fibers follow the track of natural spider silk’, Macromolecules, 2011, 44, 1166–1176.
  • Zhou G., Shao Z., Knight D. P., Yan J. and Chen X.: ‘Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts’, Adv. Mater., 2009, 21, 366–370.
  • Slota U., Mougin N., Römer L. M. and Leimer A. H.: ‘Synthetic spider silk proteins and threads’, Chem. Eng. Prog., 2012, 108, 43–49.
  • Humenik M., Smith A. M. and Scheibel T.: ‘Recombinant spider silks – biopolymers with potential for future applications’, Polymer, 2011, 3, 640–661.
  • Ferchault de Réaumur R.-A.: ‘Examen de la soie des araignées’. Mémoires de l'académie royale des Sciences 1710, 386–408. http://gallica.bnf.fr/ark:/12148/cb32786820s/date.
  • Scheibel T.: ‘Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins’, Microbiol. Cell Fact., 2004, 3, 14.
  • Vendrely C. and Scheibel T.: ‘Biotechnological production of spider-silk proteins enables new applications’, Biomacromol. Biosci., 2007, 7, 401–440.
  • Arcidiacono S., Mello C., Kaplan D. L., Cheley S. and Bayley H.: ‘Purification and characterization of recombinant spider silk expressed in Escherichia coli’, Appl. Microbiol. Biotechnol., 1998, 49, 31–38.
  • Prince J. T., McGrath K. P., DiGirolamo J. C. M. and Kaplan D. L.: ‘Construction, cloning, and expression of synthetic genes encoding spider dragline silk’, Biochemistry, 1995, 34, 10879–10885.
  • Lewis R. V., Hinman M. B., Kothakota S. and Fournier M. J.: ‘Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins’, Protein Expression Purif., 1996, 7, 400–406.
  • Stark M., Grip S., Rising A., Hedhammar M., Engström W., Hjälm G. and Johansson J.: ‘Macroscopic fibers self-assembled from recombinant miniature spider silk proteins’, Biomacromolecules, 2007, 8, 1695–1701.
  • Fahnestock S. R. and Bedzyk A.: ‘Production of synthetic spider dragline silk protein in Pichia pastoris’, Appl. Microbiol. Biotechnol., 1997, 47, 33–39.
  • Scheller J., Gührs K. -H., Grosse F. and Conrad U.: ‘Production of spider silk proteins in tobacco and potato’, Nat. Biotechnol., 2001, 19, 573–577.
  • Menassa R., Zhu H., Karatzas C. N., Lazaris A., Richman A. and Brandle J.: ‘Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production’, Plant Biotechnol. J., 2004, 2, 431–438.
  • Yang J., Barr L. A., Fahnestock S. R. and Liu Z.-B.: ‘High yield recombinant silk-like protein production in transgenic plants through protein targeting’, Transgenic Res., 2005, 14, 313–324.
  • Huemmerich D., Scheibel T., Vollrath F., Cohen S., Gat U. and Ittah S.: ‘Novel assembly properties of recombinant spider dragline silk proteins’, Curr. Biol., 2004, 14, 2070–2074.
  • Hu H.-T., Fan B.-L., Lian Z. X., Dai Y.-P., Wang L.-L., Liu Z.-L., Fei J. and Li N.: ‘Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice’, Anim. Behav., 2007, 18, 1–12.
  • Hauptmann V., Weichert N., Rakhimova M. and Conrad U.: ‘Spider silks from plants – a challenge to create native-sized spidroins’, Biotechnol. J., 2013, 8, 1183–1192.
  • Ayoub N. A., Garb J. E., Tinghitella R. M., Collin M. A. and Hayashi C. Y.: ‘Blueprint for a high-performance biomaterial: full-length spider dragline silk genes’, Plos One, 2007, 6, e514.
  • Xia X. -X., Qiana Z. -G., Kib C. S., Park Y. H., Kaplan D. and Lee S. Y.: ‘Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber’, Proc. Natl Acad. Sci., 2010, 107, 10459–14063.
  • Spieß K., Wohlrab S. and Scheibel T.: ‘Structural characterization and functionalization of engineered spider silk films’, Soft Matter, 2010, 6, 4168–4174.
  • Yang M., Kawamura J., Zhu Z., Yamauchi K. and Asakura T.: ‘Development of silk-like materials based on Bombyx mori and Nephila clavipes dragline silk fibroins’, Polymers, 2009, 50, 117–124.
  • Ude A. U., Eshkoor R. A., Zulkifili R., Ariffin A. K., Dzuraidah A. W. and Azhari C. H.: ‘Bombyx mori silk fibre and its composite: a review of contemporary developments’, Mater. Des., 2014, 57, 298–305.
  • Ratanavaraporn J., Kanokpanont S. and Damrongsakkul S.: ‘The development of injectable gelatin/silk fibroin microspheres for the dual delivery of curcumin and piperine’, J. Mater. Sci.: Mater. Med., 2014, 25, 401–410.
  • Jin J., Hassanzadeh P., Perotto G., Sun W., Brenckle M. A., Kaplan D., Omenetto F. G. and Marco R.: ‘A biomimetic composite from solution self-assembly of chitin nanofibers in a silk fibroin matrix’, Adv. Mater., 2013, 25, 4482–4487.
  • Currie H. A., Deschaume O., Naik R. R., Perry C. C. and Kaplan D. L.: ‘Genetically engineered chimeric silk–silver binding proteins’, Adv. Funct. Mater., 2011, 21, 2889–2895.
  • Fei X., Jia M., Du X., Yang Y., Zhang R., Shao Z., Zhao X. and Chen X.: ‘Green synthesis of silk fibroin–silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties’, Biomacromolecules, 2013, 14, 4483–4488.
  • Ramón A., Señorale-Pose M. and Marín M.: ‘Inclusion bodies: not that bad…’, Front. Microbiol., 2014, 5, 56.
  • Lebendiker M. and Danieli T.: ‘Production of prone-to-aggregate proteins’, FEBS Lett., 2014, 588, 236–246.
  • The Safety in Biotechnology Working Party of the European Federation of Biotechnology: ‘Safe biotechnology. 10: DNA content of biotechnological process waste’, Trends Biotechnol., 2000, 18, 141–146.
  • Kiienzi M., Assi F., Chmiel A., Collins C. H., Donikian M., Dominguez J. B., Financsek L., Fogarty L. M., Frommer W., Hasko F., Hovland J., Houwink E. H., Mahler J. L., Sandkvist A., Sargeant K., Sloover C. and Tuijnenburg Muijs G.: ‘Safe biotechnology. General considerations’, Appl. Microbiol. Biotechnol., 1985, 21, 1–6.
  • Food and Agriculture Organization: ‘Statistical yearbook’, 2013, Rome, FAO.
  • De Schutter O.: ‘The transformative potential of the right to food’, 2014;. http://www.srfood.org/images/stories/pdf/officialreports/20140310_finalreport_en.pdf (accessed 22 July 2015).
  • Food and Agriculture Organization: ‘World agriculture: towards 2015/2030 – an FAO perspective’, 2003, London, FAO.
  • Food and Agriculture Organization: ‘Livestock's long shadow – environmental issues and options’, 2006, ftp://ftp.fao.org/docrep/fao/005/y4252E/y4252e.pdf (accessed 26 November 2014) Rome, FAO.
  • Machovina B. and Feely K. J.: ‘Taking a bite out of biodiversity’, Science, 2014, 343, 838.
  • Bringezu S., O'Brien M. and Schütz H.: ‘Beyond biofuels: assessing global land use for domestic consumption of biomass: a conceptual and empirical contribution to sustainable management of global resources’, Land Use Policy, 2012, 29, 224–232.
  • Lal R.: ‘Soil science and the carbon civilization’, Soil Sci. Soc. Am. J., 2007, 71, 1425–1437.
  • Gomiero T., Paoletti M. G. and Pimentel D.: ‘Biofuels: efficiency, ethics, and limits to human appropriation of ecosystem services’, J. Agric. Environ. Ethics, 2010, 23, 403–434.
  • Hoekstra A. Y. and Mekonnen M. M.: ‘The water fooprint of humanity’, Proc. Natl Acad. Sci., 2011, 109, 3232–3237.
  • World Water Assessment Programme: ‘Water in a changing world’, 2009, London, UNESCO.
  • Herrero M., Havlík P., Valin H., Notenbaert A., Rufino M., Thornton P. K., Blümmel M., Weiss F., Grace D. and Obersteiner M.: ‘Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems’, Proc. Natl Acad. Sci., 2013, 52, 20888–20893.
  • Wen H., Lan X., Zhang Y., Zhao T., Wang Y., Kajiura Z. and Nakagaki M.: ‘Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons’, Mol. Biol. Rep., 2010, 37, 1815–1821.
  • Tomita M.: ‘Transgenic silkworms that weave recombinant proteins into silk cocoons’, Biotechnol. Lett., 2011, 33, 645–654.
  • Mulvihill D. M. and Kinsella J. E.: ‘Gelation characteristics of whey proteins and β-lactoglobulin’, Food Technol., 1987, 41, 102–111.
  • Kinsella J. E. and Whitehead D. M.: ‘Proteins in whey: chemical, physical, and functional properties’, in ‘Advances in food and nutrition research’, (ed. Kinsella J. E.), ; 1989, San Diego, CA, Academic Press, Inc.
  • Ziegler G. R. and Foegeding E. A.: ‘The gelation of proteins’, in ‘Advances in food and nutrition research’, (ed. Kinsella J. E.); 1990, San Diego, CA, Academic Press, Inc.
  • Poole A. J., Church J. S. and Huson M. G.: ‘Environmentally sustainable fibers from regenerated protein’, Biomacromolecules, 2009, 10, 1–8.
  • Chen L. Y., Remondetto G. E. and Subirade M.: ‘Food protein-based materials as nutraceutical delivery systems’, Trends Food Sci. Technol., 2006, 17, 272–283.
  • Yan C. and Pochan D. J.: ‘Rheological properties of peptide-based hydrogels for biomedical and other applications’, Chem. Soc. Rev., 2010, 39, 3528–3540.
  • Jonker A. M., Loewik D. W. P. M. and van Hest J. C. M.: ‘Peptide- and protein-based hydrogels’, Chem. Mater., 2012, 24, 759–773.
  • Tuskes P. M., Tuttle J. P. and Collins M. M.: ‘Rearing’ ‘The wild silk moths of North America: the natural History of the Saturniidae of the United States and Canada’, 1996, Ithaca, Cornell University Press.
  • Prempree A., Chantachon S. and Wannajun S.: ‘The integration of traditional knowledge in the design and development of mudmee, praewa and yok tong silk products for enhancing community economy’, Indian J. Trad. Knowledge, 2014, 13, 305–312.
  • Wegst U. G. K., Bai H., Saiz E., Tomsia A. P. and Ritchie R. O.: ‘Bioinspired structural materials’, Nat. Mater., 2014, 14, 23–36.
  • Kosoy N., Brown P. G., Bosselmann K., Duraiappah A., Mackey B., Martinez-Alier J., Rogers D. and Thomson R.: ‘Pillars for a flourishing Earth: planetary boundaries, economic growth delusion and green economy’, Curr. Opin. Environ. Sustainability, 2012, 4, 74–79.
  • Kastner T., Ibarrola Rivas M. J., Koch W. and Nonhebel S.: ‘Global changes in diets and the consequences for land requirements for food’, Proc. Natl Acad. Sci., 2012, 109, 6868–6872.
  • Alcott B.: ‘Jevons' paradox’, Ecol. Econ., 2005, 54, 9–21.
  • Polimeni J. M. and Polimeni R. I.: ‘Jevons' paradox and the myth of technological liberation’, Ecol. Complexity, 2006, 3, 344–353.
  • Allen R. C.: ‘Global economic history – a very short introduction’, 2011, New York, Oxford University Press.
  • van Griethuysen P.: ‘Why are we growth-addicted?The hard way towards degrowth in the involutionary western development path’, J. Cleaner Prod., 2010, 18, 590–595.
  • Kasper (Ed.) R. G.: ‘Technological assessment – understanding the social consequences of technological applications’, 293; 1972, New York, Praeger Publishers.
  • MacKenzie D. and Wajcman (Eds) J.: ‘The social shaping of technology’, (ed. MacKenzie D. et al.), ; 1985, Philadelphia, PA, Open University Press.
  • Veblen T.: ‘On the nature of capital; investments, intangible assets and the pecuniary magnate’, Quat. J. Econ., 1908, 23, 104–136.
  • Smith B., Baron N., English C., Galindo H., Goldman E., McLeod K., Miner M. and Neeley E.: ‘COMPASS: navigating the rules of scientific engagement’, Plos Biol., 2013, 11.
  • State of the Planet Declaration: ‘Planet under pressure: new knowledge towards solutions’. Proc. Conf. on ‘Planet under pressure’, 2012. http://www.planetunderpressure2012.net/pdf/state_of_planet_declaration.pdf (accessed 22 July 2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.