Publication Cover
Materials Technology
Advanced Performance Materials
Volume 31, 2016 - Issue 6
342
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis, characterisation and sensing properties of Sm2O3 doped SnO2 nanorods to C2H2 gas extracted from power transformer oil

, , , &
Pages 364-370 | Received 23 Mar 2015, Accepted 08 Aug 2015, Published online: 23 Feb 2016

References

  • QuintellaC. M., MeiraM., SilvaW. L., FilhoR. G., AraújoA. L., JúniorE. T. and SalesL. J.: ‘Development of a spectrofluorimetry-based device for determining the acetylene content in the oils of power transformers’, Talanta, 2013, 117, 263–267.
  • SomekawaT., KasaokaM., KawachiF., NaganoY., FujitaM. and IzawaY.: ‘Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy’, Opt. Lett., 2013, 38, 1086–1088.
  • ChenW. G., ZhouQ., GaoT. Y., SuX. and WanF.: ‘Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil’, J. Nanomater., 2013, DOI, 101155/2013/127345.
  • DuvalM.: ‘The duval triangle for load tap changers, non-mineral oils and low temperature faults in transformers’, IEEE Electr. Insul. Mag., 2008, 24, 22–29.
  • SinghS. and BandyopadhyayM.: ‘Dissolved gas analysis technique for incipient fault diagnosis in power transformers: a bibliographic survey’, IEEE Electr. Insul. Mag., 2010, 26, 41–46.
  • YangZ., TangW. H., ShintemirovA. and WuQ. H.: ‘Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers’, IEEE Trans. Syst. Man Cybern. C, 2009, 39C, 597–610.
  • ChenW. G., GaoT. Y., LiQ. Z. and GanH. D.: ‘Enhanced gas sensing properties of flower-like ZnO nanostructure to acetylene’, Mater. Technol., 2015, 30, 96–100.
  • WangX. C., ZhaoM. G., LiuF., JiaJ., LiX. and CaoL.: ‘C2H2 gas sensor based on Ni-doped ZnO electrospun nanofibers’, Ceram. Int., 2013, 39, 2883–2887.
  • ZhouQ., ChenW. G., PengS. D. and ZengW.: ‘Hydrothermal synthesis and acetylene sensing properties of variety low dimensional zinc oxide nanostructures’, Sci. World J., 2014, DOI, 101155/2014/489170.
  • ZhangX. X., ZhangJ. B. and LiR. H.: ‘Application of hydroxylated single-walled carbon nanotubes for the detection of C2H2 gases in transformer oil’, J. Comput. Theor. Nanosci., 2013, 10, 399–404.
  • WuZ. Y., GongY. H. and YuQ. X.: ‘Photoacoustic spectroscopy detection and extraction of discharge feature gases in transformer oil based on 1.5 mu tunable fiber laser’, Infrared Phys. Technol., 2013, 58, 86–90.
  • YunY. X., ChenW. G. and WangY. Y.: ‘Photoacoustic detection of dissolved gases in transformer oil’, Eur. Trans. Electr. Power, 2008, 18, 562–576.
  • ZengW., MiaoB., ZhouQ. and LinL. Y.: ‘Hydrothermal synthesis and gas sensing properties of variety low dimensional nanostructures of SnO2’, Physica E, 2013, 47E, 116–121.
  • DepanR. D. K.: ‘Misra: Structural and physicochemical aspects of silica encapsulated ZnO quantum dots with high quantum yield and their natural uptake in HeLa cells’, J. Biomed. Mater. Res. A, 2014, 102A, 2934–2941.
  • JadhavA. H., PatilS. H., SathayeS. D. and PatilK. R.: ‘A facile room temperature synthesis of ZnO nanoflower thin films grown at a solid-liquid interface’, J. Mater. Sci., 2014, 49, 5945–5954.
  • JiaZ. and MisraR. D. K.: ‘Tunable ZnO quantum dots for bioimaging: synthesis and photoluminescence’, Mater. Technol., 2013, 28, 221–227.
  • CarneiroJ. O., AzevedoS., FernandesF., FreitasE., PereiraM., TavaresC. J., Lanceros-MéndezS. and TeixeiraV.: ‘Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties’, J. Mater. Sci., 2014, 49, 7476–7488.
  • WangC. X., ZengW., LiT. F. and LiY. Q.: ‘Hydrothermal synthesis of different CuO nano-flowers and their gas sensing property’, Mater. Technol., 2015, 30, 205–212.
  • SuzukiT., YamazakiT., HayashiK. and NomaT.: ‘High gas sensitivity of tin oxide ultrathin films deposited on glasses and alumina substrates’, J. Mater. Sci., 1991, 26, 6419–6422.
  • MatinB. M., MortazaviY., KhodadadiA. A., AbbasiA. and FiroozA. A.: ‘Alkaline- and template-free hydrothermal synthesis of stable SnO2 nanoparticles and nanorods for CO and ethanol gas sensing’, Sens. Actuators B, 2010, 151B, 140–145.
  • ZhouX. M., FuW. Y., YangH. B., ZhangY. Y., LiM. H., LiY. X. and FuW. Y.: ‘Novel SnO2 hierarchical nanostructures: synthesis and their gas sensing properties’, Mater. Lett., 2013, 90, 53–55.
  • HyodoT., AbeS., ShimizuY. and EgashiraM.: ‘Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof’, Sens. Actuators B, 2003, 93B, 590–600.
  • XuJ. Q., DingW., QinL. P., YuW. and PanQ.: ‘SnO2 nanorods and hollow spheres: controlled synthesis and gas sensing properties’, Sens. Actuators B, 2009, 137B, 490–495.
  • WangL. L., LouZ., ZhangT., FanH. and XuX.: ‘Facile synthesis of hierarchical SnO2 semiconductor microspheres for gas sensor application’, Sens. Actuators B, 2011, 155B, 285–289.
  • SunP., ZhouX., WangC., WangB., XuX. and LuG.: ‘One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures’, Sens. Actuators B, 2014, 190B, 32–39.
  • CarneyC. M., YooS. and AkbarS. A.: ‘TiO2-SnO2 nanostructures and their H2 sensing behavior’, Sens. Actuators B, 2005, 108B, 29–33.
  • KugishimaM., ShimanoeK. and YamazoeN.: ‘C2H4O sensing properties for thick film sensor using La2O3-modified SnO2’, Sens. Actuators B, 2006, 118B, 171–176.
  • WeberI. T., ValentiniA., ProbstL. F. D., LongoE. and LeiteE. R.: ‘Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems’, Sens. Actuators B, 2004, 97B, 31–38.
  • LingT. R. and TsaiC. M.: ‘Influence of nano-scale dopants of Pt, CaO and SiO2, on the alcohol sensing of SnO2 thin films’, Sens. Actuators B, 2006, 119B, 497–503.
  • HwangI. S., KimS. J., ChoiJ. K., JiH., KimG. -T., CaoG. and LeeJ. -H.: ‘Synthesis and gas sensing characteristics of highly crystalline ZnO-SnO2 core-shell nanowires’, Sens. Actuators B, 2010, 148B, 595–600.
  • ChenW. G., LiQ. Z. and GanH. L.: ‘Study of CuO-SnO2 heterojunction nanostructures for enhanced CO gas sensing properties’, Adv. Appl. Ceram., 2014, 113, 139–146.
  • NeriG., BonavitaA., MicaliG., RizzoG., PinnaN., NiederbergerM. and BaJ.: ‘Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method’, Sens. Actuators B, 130B, 222–230.
  • PourfayazF., KhodadadiA., MortazaviY. and MohajerzadehS. S.: ‘CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4’, Sens. Actuators B, 2005, 108B, 172–176.
  • ChenW. G., ZhouQ., XuL. N., WanF., PengS. and ZengW.: ‘Improved methane sensing properties of Co-doped SnO2 electrospun nanofibers’, J. Nanomater., 2013, DOI: 101155/2013/173232.
  • ZengW., LiuT. M., LiuD. J. and HanE. J.: ‘Hydrogen sensing and mechanism of M-doped SnO2 (M = Cr3+, Cu2+ and Pd2+) nanocomposite’, Sens. Actuators B, 2011, 160B, 455–462.
  • SunP., CaoY., LiuJ., SunY., MaJ. and LuG.: ‘Dispersive SnO2 nanosheets: hydrothermal synthesis and gas-sensing properties’, Sens. Actuators B, 2011, 156B, 779–783.
  • LinaZ. D., SongaW. L. and YangH. M.: ‘Highly sensitive gas sensor based on coral-like SnO2 prepared with hydrothermal treatment’, Sens. Actuators B, 2012, 173B, 22–27.
  • GuoW. W., LiuT. M., ZhangH. J., SunR., ChenY., ZengW. and WangZ.: ‘Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology’, Sens. Actuators B, 2012, 166B-167B, 492–499.
  • ZhouX. M., FuW. Y., YangH. B., MaD., CaoJ., LengY., GuoJ., ZhangY., SuiY., ZhaoW. and LiM.: ‘Synthesis and ethanol-sensing properties of flowerlike SnO2 nanorods bundles by poly (ethylene glycol)-assisted hydrothermal process’, Mater. Chem. Phys., 2010, 124, 614–618.
  • ZhangT., LiuL., QiQ., LiS. and LuG.: ‘Development of microstructure In/Pd-doped SnO2 sensor for low-level CO detection’, Sens. Actuators B, 2009, 139B, 287–291.
  • QiQ., ZhangT., ZhengX. J., FanH., LiuL., WangR. and ZengY.: ‘Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference’, Sens. Actuators B, 2008, 134B, 36–42.
  • RaniS., RoyS. C. and BhatnagarM. C.: ‘Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films’, Sens. Actuators B, 2007, 122B, 204–210.
  • FeyzabadS. A., MortazaviY., KhodadadiA. A. and HemmatiS.: ‘Sm2O3 doped-SnO2 nanoparticles very selective and sensitive to volatile organic compounds’, Sens. Actuators B, 2013, 181B, 910–918.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.