Publication Cover
Materials Technology
Advanced Performance Materials
Volume 31, 2016 - Issue 7
229
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Synthesis of β-cyclodextrin–chitosan–graphene oxide composite and its application for adsorption of manganese ion (II)

, , , , , & show all
Pages 406-415 | Received 15 Jul 2015, Accepted 22 Aug 2015, Published online: 19 Feb 2016

References

  • Idris S. A. M.: Adsorption, kinetic and thermodynamic studies for manganese extraction from aqueous medium using mesoporous silica. J. Colloid Interf. Sci.., 2015, 440, 84–90.
  • Hakami O., Zhang Y. and Banks C. J.: Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res., 2012, 46, (12), 3913–3922.
  • Abollino O., Aceto M., Malandrino M., Sarzanini C. and Mentasti E.: Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res., 2003, 37, (7), 1619–1627.
  • Robinson T., McMullan G., Marchant R. and Nigam P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 2001, 77, (3), 247–255.
  • Forgacs E., Cserhati T. and Oros G.: Removal of synthetic dyes from wastewaters: a review. Environ. Int., 2004, 30, (7), 953–971.
  • Depan D., Girase B., Shah J. S. and Misra R. D. K.: Structure-process-property relationship of polar graphene oxide mediated cellular response and stimulated growth of osteoblasts. Acta Biomater., 2011, 7, 3432–3445.
  • Girase B., Shah J. S. and Misra R. D. K.: Cellular mechanics of modulated osteoblasts functions in graphene oxide reinforced elastomers. Adv. Biomater., 2012, 14, B101–B111.
  • Misra R. D. K. and Chaudhari P.: Osteoblasts reponse to nylon 6,6 blended with single-walled carbon nanohorn. J. Biomed. Mater. Res. A, 2013, 101A, 1059–1068.
  • Depan D. and Misra R. D. K.: Processing-structure-functional property relationship in organic-inorganic nanostructured scaffolds for bone-tissue engineering: The response of preosteoblasts. J. Biomed. Mater. Res. A, 2012, 100A, 3080–3091.
  • Chaudhari P., Pesacreta T. C. and Misra R. D. K.: Interplay between protein–modified surface and functional response of osteoblasts. J. Biomed. Mater. Res. A, 2012, 100A, 3157–3166.
  • Misra R. D. K., Girase B., Depan D. and Shah J. S.: Hybrid nanoscale architecture for enhancing antimicrobial activity: Immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adv. Biomater., 2012, 14, B93–B100.
  • Misra R. D. K., Depan D. and Shah J. S.: Structure-process-functional property relationship of nanostructured carbon mediated cellular response for soft tissue reconstruction and replacement. Acta Biomater., 2012, 8, 1908–1917.
  • Huang H. Z., Yuan Q., Shah J. S. and Misra R. D. K.: A new family of folate-decorated and carbon nanotube-mediated drug delivery system: Synthesis and drug delivery response. Adv. Drug Delivery Rev., 2011, 63, 1332–1339.
  • Misra R. D. K., Depan D., Challa V. S. A. and Shah J. S.: Supramolecular structure through epitaxial growth of semiconducting poly (3-hexylthiophene) on carbon nanotubes as building blocks for nanoscale electronics. J. Phys. Chem. Chem. Phys., 2014, 16, 19122–19129.
  • Depan D. and Misra R. D. K.: The development, characterization, and cellular response of a novel electroactive nanostructured composite for electrical stimulation of neural cells. Biomater. Sci., 2014, 2, 1727–1739.
  • Li L., Luo C., Li X., Duan H. and Wang X.: Preparation of magnetic ionic liquid/chitosan/graphene oxidecomposite and application for water treatment. Int. J. Biol. Macromol., 2014, 66, 172–178.
  • Depan D., Pesacreta T. C. and Misra R. D. K.: The synergistic effect of hybrid graphene oxide-chitosan system and biomimetic mineralization on osteoblasts functions. Biomater. Sci., 2014, 2, 264–274.
  • Depan D., Shah J. S. and Misra R. D. K.: Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C, 2011, C31, 1305–1312.
  • Schniepp H. C., Li J. L., McAllister M. J., Sai H., Herrera-Alonso M., Adamson D. H., Prud'homme R. K., Car R., Saville D. A. and Aksay I. A.: Functionalized singlegraphene sheets derived from splitting graphite oxide. J. Am. Chem. Soc., 2006, 110, (17), 8535–8539.
  • Wang Z., Zhang J., Chen P., Zhou X., Yang Y., Wu S., Niu L., Han Y., Wang L., Chen P., Boey F., Zhang Q., Liedberg B. and Zhang H.: Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens. Bioelectron., 2011, 26, (9), 3881–3886.
  • Wu Y., Zuo F., Zheng Z., Ding X. and Peng Y.: A novel approach to molecular recognition surface of magnetic nanoparticles based on host–guest effect. Nanoscale Res. Lett., 2009, 4, (7), 738–747.
  • Ghosh S., Badruddoza A. Z. M., Uddin M. S., Hidajat K.: Adsorption of chiral aromatic amino acids onto carboxymethyl-beta-cyclodextrin bonded Fe3O4/SiO2 core-shell nanoparticles. J. Colloid Interf. Sci., 2011, 354, (2), 483–492.
  • Guo Y. J., Guo S. J., Ren J. T., Zhai Y. M., Dong S. J. and Wang E. K.: Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano, 2010, 4, (7), 4001–4010.
  • Depan D., Singh R. P. and Misra R. D. K.: Stability of chitosan/montmorillonite nanohybrid toward enzymatic degradation on grafting with poly(lactic) acid. Mater. Sci. Technol., 2014, 30, 587–592.
  • Depan D., Shah J. S. and Misra R. D. K.: Degradation mechanism and increased stability of chitosan-based hybrid scaffolds cross-linked with nanostructured carbon: Process-structure-functional property relationship. Polym. Degrad. Stab., 2013, 98, 2331–2339.
  • Ravi-Kumar M. N. V. R.: A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46, (1), 1–27.
  • Depan D. and Misra R. D. K.: The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on cellular response of osteoblasts: Structure-functional property relationship. Acta Biomater., 2013, 9, 6084–6094.
  • Depan D., Venkatsurya P. K. C., Girase B. and Misra R. D. K.: Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater., 2011, 7, 2163–2175.
  • Fan L. L., Li M., Lv Z., Sun M., Luo C. N., Lu F. G. and Qiu H. M.: Fabrication of magnetic chitosan nanoparticles grafted with beta-cyclodextrin as effective adsorbents toward hydroquinol. Colloid. Surf. B: Biointerf., 2012, 95, 42–49.
  • Reiad N. A., Salam O. E. A., Abadir E. F. and Harraz F. A.: Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane. J. Environ. Sci., 2012, 4, (8), 1425–1432.
  • Laus R. and de Fávere V. T.: Competitive adsorption of Cu(II) and Cd(II) ions by chitosan cross linked with epichlorohydrin–triphosphate. Bioresour. Technol., 2011, 102, (19), 8769–8776.
  • Fan L., Luo C., Sun M., Qiu H. and Li X.: Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloid. Surf. B: Biointerf., 2013, 103, 601–607.
  • W. S. Hummers Jr. and Offeman R. E.: Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80, (6), 1339–1339.
  • Binello A., Cravotto G., Nano G. M. and Spagliardi P.: Synthesis of chitosan–cyclodextrin adducts and evaluation of their bitter-masking properties. Flavour Frag. J., 2004, 19, (5), 394–400.
  • Ho Y. S. and McKay G.: Pseudo-second order model for sorption processes. Process Biochem., 1999, 34, 451–465.
  • Langmuir I.: The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc., 1916, 38, (6), 2221–2295.
  • Freundlich H.: ‘Colloid and capillary’, 1928, New York, E.P. Dutton and Co..
  • Fytianos K., Voudrias E. and Kokkalis E.: Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments. Chemosphere, 2000, 40, (1), 3–6.
  • da Fonseca M. G., de Oliveira M. M. and Arakaki L. N. H.: Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a claymineral. J. Hazard. Mater., 2006, 137, (1), 288–292.
  • Li Z. Z., Imaizumi S., Katsumi T., Inui T., Tang X. W. and Tang Q.: Manganese removal from aqueous solution using a thermally decomposed leaf. J. Hazard. Mater., 2010, 177, (1-3), 501–507.
  • Vijayaraghavan K., Winnie H. Y. N. and Balasubramanian R.: Biosorption characteristics of crab shell particles for the removal of manganese(II) and zinc(II) from aqueous solutions. Desalination, 2011, 266, (1-3), 195–200.
  • Al-Wakeel K. Z., Monem H. A. E. and Khalil M. M. H.: Removal of divalent manganese from aqueous solution using glycine modified chitosan resin. J. Environ. Chem. Eng., 2015, 3, 179–186.
  • Vaghetti J. C. P., Lima E. C., Royer B., da Cunha B. M., Cardoso N. F., Brasil J. L. and Dias S. L. P.: Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions. J. Hazard. Mater., 2009, 162, (1), 270–280.
  • Ma L., Peng Y., Wu B., Lei D. and Xu H.: Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution. Chem. Eng. J., 2013, 225, 59–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.