396
Views
40
CrossRef citations to date
0
Altmetric
Research Articles

Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: Case series of 14 patients

, , , , , , & show all

References

  • DeFelipe J, Jones EG. Cajal's degeneration and regeneration of the nervous system (May RM, translator). New York: Oxford University Press; 1991.
  • Raisman G. A promising therapeutic approach to spinal cord repair. J R Soc Med 2003;96(6):259–61.
  • Samadikuchaksaraei A. An overview of tissue engineering approaches for management of spinal cord injuries. J Neuroeng Rehabil 2007;4:15.
  • Reier PJ. Cellular transplantation strategies for spinal cord injury and translational neurobiology. Neurorx 2004;1(4):424–51.
  • Hyun JK, Kim HW. Clinical and experimental advances in regeneration of spinal cord injuries. J Tissue Eng 2010;1(1):1–20. doi: 10.4061/2010/650857.
  • David S, Aguayo AJ. Axonal elongation into peripheral nervous system ‘bridges’ after central nervous system injury in adult rats. Science 1981;214:931–3.
  • Tuszynski MH, Petersen DA, Ray J, Baird A, Nakahara Y, Gage FH. Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp Neurol 1994;126(1):1–14.
  • Guenard V, Aebischer P, Bunge RP. The astrocyte inhibition of peripheral nerve regeneration is reversed by Schwann cells. Exp Neurol 1994;126:44–60.
  • Oudega M, Varon S, Hagg T. Regeneration of adult rat sensory axons into intraspinal nerve grafts: promoting effects of conditioning lesion and graft predegeneration. Exp Neurol 1994;129:194–206.
  • Liu S, Kadi K, Boisset N, Lacroix C, Said G, Tadie M. Reinnervation of denervated lumbar ventral roots and their target muscle by thoracic spinal motoneurons via an implanted nerve autograft in adult rats after spinal cord injury. J Neurosci Res 1999;56(5):506–17.
  • Liu S, Aghakhani N, Boisset N, Said G, Tadie M. Innervation of the caudal denervated ventral roots and their target muscles by the rostral spinal motoneurons after implanting a nerve autograft in spinal cord-injured adult marmosets. J Neurosurg 2001;94( 1 Suppl.):82–90.
  • Dam-Hieu P, Liu S, Choudhri T, Said G, Tadie M. Regeneration of primary sensory axons into the adult rat spinal cord via a peripheral nerve graft bridging the lumbar dorsal roots to the dorsal column. J Neurosci Res 2002;68(3):293–304.
  • Tadie M, Liu S, Robert R, Guiheneuc P, Pereon Y, Perrouin-Verbe B, et al. Partial return of motor function in paralyzed legs after surgical bypass of the lesion site by nerve autografts three years after spinal cord injury. J Neurotrauma 2002;19(8):909–16.
  • Nomura H, Baladie B, Katayama Y, Morshead CM, Shoichet MS, Tator CH. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury. Neurosurgery 2008;63(1):127–41; discussion 141–3.
  • Itoh S, Matsuda A, Kobayashi H, Ichinose S, Shinomiya K, Tanaka J. Effects of a laminin peptide (YIGSR) immobilized on crab-tendon chitosan tubes on nerve regeneration. J Biomed Mater Res B Appl Biomater 2005;73(2):375–82.
  • Patel M, Mao L, Wu B, Vandevord PJ. GDNF-chitosan blended nerve guides: a functional study. J Tissue Eng Regen Med 2007;1(5):360–7.
  • Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, et al. ASIA Neurological Standards Committee 2002. J Spinal Cord Med 2003;26( Suppl. 1):S50–6.
  • Potter K, Saifuddin A. MRI of chronic spinal cord injury. Br J Radiol 2003;76:347–52.
  • Yablonka-Reuveni Z, Nameroff M. Skeletal muscle cell populations separation and partial characterization of fibroblast-like cells from embryonic tissue using density centrifugation. Histochemistry 1987;87(1):27–38.
  • Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocytes apoptosis reduces remolding and improve cardiac function. Nat Med 2001;7(4):430–6.
  • Wang JA, Fan YQ, Li CL, He H, Sun Y, Lv BJ. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function. J Zhejiang Univ Sci 2005;6B(4):242–8.
  • Hiroshi E, Felix E, Chia-Chien WY, Ichiro N. Neuronal differentiation of bone marrow-derived stromal stem cells involves suppression of discordant phenotypes through Ggene silencin. J Biol Chem 2005;280(25):23691–7.
  • Nakagomi T, Molnár Z, Nakano-Doi A, Taguchi A, Saino O, Kubo S, et al. Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev 2011;20(12):2037–51.
  • Johanson C, Stopa E, Baird A, Sharma H. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm 2011;118(1):115–33. Epub 2010 Oct 10.
  • Amr SM, Moharram AN. Repair of brachial plexus lesions by end-to-side side-to-side grafting neurorrhaphy: experience based on 11 cases. Microsurgery 2005;25(2):126–46.
  • Amr SM, Essam AM, Abdel-Meguid AM, Kholeif AM, Moharram AN, El-Sadek RE. Direct cord implantation in brachial plexus avulsions: revised technique using a single stage combined anterior (first) posterior (second) approach and end-to-side side-to-side grafting neurorrhaphy. J Brachial Plex Peripher Nerve Inj 2009;4:8.
  • Hallin RG, Carlstedt T, Nilsson-Remahl I, Risling M. Spinal cord implantation of avulsed ventral roots in primates; correlation between restored motor function and morphology. Exp Brain Res 1999;124(3):304–10.
  • Htut M, Misra VP, Anand P, Birch R, Carlstedt T. Motor recovery and the breathing arm after brachial plexus surgical repairs, including re-implantation of avulsed spinal roots into the spinal cord. J Hand Surg Eur Vol 2007;32(2):170–8.
  • Frostick SP, Yin Q, Kemp G. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 1998;18:397–405.
  • Blottner D, Baumgarten HG. Neurotrophy and regeneration in vivo. Acta Anat 1994;150:235–45.
  • Warner WC, Jr. Paralytic disorders. In: Canale ST, Beaty JH, (eds.) Campbell's operative orthopaedics. Volume 2. 11th ed. St. Louis, MO: Mosby Year-Book; 2008. p. 1410–98.
  • Rekand T. Clinical assessment and management of spasticity: a review. Acta Neurol Scand Suppl 2010;(190):62–6. doi: 10.1111/j.1600-0404.2010.01378.x.
  • Jonas U, Castro-Diaz D, Bemelmans BLH, Madersbacher H, Lycklama à Nijeholt AAB. Neurogenic voiding dysfunctions. Eur Urol 2003;44(3):283–382.
  • Stiens SA, Bergman SB, Goetz LL. Neurogenic bowel dysfunction after spinal cord injury: clinical evaluation and rehabilitative management. Arch Phys Med Rehabil 1997;78( 3 suppl.):S86–102.
  • Bray GM, Villegas-Perez MP, Vidal-Sanz M, Aguayo AJ. The use of peripheral nerve grafts to enhance neuronal survival, promote growth and permit terminal reconnections in the central nervous system of adult rats. J Exp Biol 1987;132:5–19.
  • Bunge MB. Bridging areas of injury in the spinal cord. Neuroscientist 2001;7:325–39.
  • Guzen FP, de Almeida Leme RJ, de Andrade MS, de Luca BA, Chadi G. Glial cell line-derived neurotrophic factor added to a sciatic nerve fragment grafted in a spinal cord gap ameliorates motor impairments in rats and increases local axonal growth. Restor Neurol Neurosci 2009;27(1):1–16.
  • Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats partial restoration of hind limb function. Science 1996;273:510–3.
  • Lee YS, Hsiao I, Lin VW. Peripheral nerve grafts and a FGF restore partial hindlimb function in adult paraplegic rats. J Neurotrauma 2002;19:1203–16.
  • Campos L, Meng Z, Hu G, Chiu DT, Ambron RT, Martin JH. Engineering novel spinal circuits to promote recovery after spinal injury. J Neurosci 2004;24(9):2090–101.
  • Gauthier P, Rega P, Lammari-Barreault N, Polentes J. Functional reconnections established by central respiratory neurons regenerating axons into a nerve graft bridging the respiratory centers to the cervical spinal cord. J Neurosci Res 2002;70(1):65–81.
  • Côté MP, Amin AA, Tom VJ, Houle JD. Peripheral nerve grafts support regeneration after spinal cord injury. Neurotherapeutics 2011;8(2):294–303.
  • Decherchi P, Lammari-Barreault N, Gauthier P. Regeneration of respiratory pathways within spinal peripheral nerve grafts. Exp Neurol 1996;137:1–14.
  • Aguayo AJ, Bray GM, Rasminsky MM, Zwimpfer T, Carter D, Vidal-Sanz M. Synaptic connections made by axons regenerating in the central nervous system of adult mammals. J Exp Biol 1990;153:199–224.
  • Terzis JK, Kostopoulos VK. The surgical treatment of brachial plexus injuries in adults. Plast Reconstr Surg 2007;119(4):73e–92e. Review.
  • Harel NY, Strittmatter SM. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci 2006;7:603–16.
  • Grubb MS, Shu Y, Kuba H, Rasband MN, Wimmer VC, Bender KJ. Short- and long-term plasticity at the axon initial segment. J Neurosci 2011;31(45):16049–55.
  • Plant GW, Bates ML, Bunge MB. Inhibitory proteoglycan immunoreactivity is higher at the caudal than the rostral Schwann cell graft-transected spinal cord interface. Mol Cell Neurosci 2001;17(3):471–87.
  • Fawcett JW. Bridging spinal cord injuries. J Biol 2008;7(7):25.
  • Thuret S, Moon LDF, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006;7(8):628–43.
  • Cheng H, Liao KK, Liao SF, Chuang TY, Shih YH. Spinal cord repair with acidic fibroblast growth factor as a treatment for a patient with chronic paraplegia. Spine 2004;29:E284–8.
  • Howland DR, Bregman BS, Tessler A, Goldberger ME. Transplants enhance locomotion in neonatal kittens whose spinal cords are transected: a behavioral and anatomical study. Exp Neurol 1995;135(2):123–45.
  • Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2011;28(8):1611–82. Epub 2010 April 20. Review.
  • Bunge MB. Novel combination strategies to repair the injured mammalian spinal cord. J Spinal Cord Med 2008;31(3):262–9.
  • Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 2008;131:2376–86.
  • Li H, Wen Y, Luo Y, Lan X, Wang D, Sun Z, et al. Transplantation of bone marrow mesenchymal stem cells into spinal cord injury: a comparison of delivery different times. [Article in Chinese]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2010;24(2):180–4.
  • Ichim TE, Solano F, Lara F, Paris E, Ugalde F, Rodriguez JP, et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int Arch Med 2010;3:30.
  • Wright KT, Masri WE, Osman A, Roberts S, Trivedi J, Ashton BA, et al. The cell culture expansion of bone marrow stromal cells from humans with spinal cord injury: implications for future cell transplantation therapy. Spinal Cord 2008;46(12):811–7.
  • Pedram MS, Dehghan MM, Soleimani M, Sharifi D, Marjanmehr SH, Nasiri Z. Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord 2010;48(6):457–63.
  • Gu W, Zhang F, Xue Q, Ma Z, Lu P, Yu B. Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology 2010;30(3):205–17.
  • Cho SR, Kim YR, Kang HS, Yim SH, Park CI, Min YH, et al. Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone marrow in a rat model of spinal cord injury. Cell Transplant 2009;18(12):1359–68.
  • Lee KH, Suh-Kim H, Choi JS, Jeun SS, Kim EJ, Kim SS, et al. Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats. Acta Neurobiol Exp (Wars) 2007;67(1):13–22.
  • Zhang HT, Luo J, Sui LS, Ma X, Yan ZJ, Lin JH, et al. Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion. Cell Mol Neurobiol 2009;29(8):1283–92.
  • Wright KT, El Masri W, Osman A, Roberts S, Chamberlain G, Ashton BA, et al. Bone marrow stromal cells stimulate neurite outgrowth over neural proteoglycans (CSPG), myelin associated glycoprotein and Nogo-A. Biochem Biophys Res Commun 2007;354(2):559–66.
  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61:364–70.
  • Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000;164:247–56.
  • Hermann A, Gast G, Liebau S, Oana Popa M, Fiedler J, Boehm BO, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 2004;117:4411–22.
  • Lepore AC, Fischer I. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp Neurol 2005;194:230–42.
  • Cao QL, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 2001;167:48–58.
  • Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 2002;69:925–33.
  • Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, et al. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 2005;80:182–90.
  • Ni JHT, Hickey G, Kalyuzhny A. Immunohistochemistry for neural stem cell research. RnDSystems, Society for Neuroscience Meeting November 14, 2005. http://www.rndsystems.com/additional_literature.aspx
  • Duobles T, Lima Tde S, Levy Bde F, Chadi G. S100beta and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury. Acta Cir Bras 2008;23(6):555–60.
  • Zhang P, Xu H, Zhang D, Fu Z, Zhang H, Jiang B. The biocompatibility research of functional Schwann cells induced from bone mesenchymal cells with chitosan conduit membrane. Artif Cells Blood Substit Immobil Biotechnol 2006;34(1):89–97.
  • Yuan Y, Zhang P, Yang Y, Wang X, Gu X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 2004;25(18):4273–78.
  • Sinis N, Kraus A, Tselis N, Haerle M, Werdin F, Schaller HE. Functional recovery after implantation of artificial nerve grafts in the rat – a systematic review. J Brachial Plex Peripher Nerve Inj 2009;4:19.
  • Young W. Spinal cord regeneration. Science 1996;273(5274):451.
  • Li Y, Raisman G. Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Exp Neurol 1995;134(1):102–11.
  • Weidenbaum M, Farcy JPC. Surgical management of thoracic and lumbar burst fractures. In: Bridwell K, DeWald R. (eds.) The textbook of spinal surgery. Vol. 2. 2nd ed. Philadelphia, PA: Lippincott-Raven Publishers; 1997. pp. 2361–78.
  • Park WB, Kim SY, Lee SH, Kim HW, Park JS, Hyun JK. The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats. BMC Neurosci 2010;11:119.
  • Huang H, Chen L, Wang H, Xiu B, Li B, Wang R, et al. Influence of patients' age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 2003;116:1488–91.
  • Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 2006;29(3):191–203; discussion 204–6.
  • Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 2005;11:913–22.
  • Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 2007;25(8):2066–73.
  • Dobkin BH, Curt A, Guest J. Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury. Neurorehabil Neural Repair 2006;20(1):5–13.
  • Guest J, Herrera LP, Qian T. Rapid recovery of segmental neurological function in a tetraplegic patient following transplantation of fetal olfactory bulb-derived cells. Spinal Cord 2006;44:135–42.
  • Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005;52(8):2521–9.
  • Zhang DZ, Gai LY, Liu HW. Differences between adipose-derived stem cells and mesenchymal stem cells in differentiation into cardiomyocytes. [Article in Chinese]. Sheng Li Xue Bao 2008;60(3):341–7.
  • Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol 2006;7:14.
  • Crisostomo PR, Wang M, Wairiuko GM, Morrell ED, Terrell AM, Seshadri P, et al. High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 2006;26(6):575–80.
  • Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 2008;9:60.
  • Pal R, Hanwate M, Jan M, Totey S. Phenotypic and functional comparison of optimum culture conditions for upscaling of bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 2009;3(3):163–74.
  • Neuhuber B, Timothy HB, Shumsky JS, Gallo G, Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 2005;1035:73–85.
  • Bradbury EJ, McMahon SB. Spinal cord repair strategies: why do they work? Nat Rev Neurosci 2006;7:644–53.
  • Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006;7:617–27.
  • Tom VJ, Houlé JD. Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge. Exp Neurol 2008;211(1):315–9.
  • Houle JD, Tom VJ, Mayes D, Wagoner G, Phillips N, Silver J. Combining an autologous peripheral nervous system ‘bridge’ and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci 2006;26(28):7405–15.
  • Lee H, McKeon RJ, Bellamkonda RV. Regenerative medicine special feature: sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci USA 2010;107(8):3340–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.