276
Views
33
CrossRef citations to date
0
Altmetric
Invited Article

Body iron delocalization: the serious drawback in iron disorders in both developing and developed countries

, , &
Pages 200-216 | Received 18 Sep 2012, Accepted 24 Sep 2012, Published online: 12 Nov 2013

References

  • Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986–1995. Erratum in: N Engl J Med. 2000;342(5):364.
  • Aisen P. Transferrin receptor 1. Int J Biochem Cell Biol. 2004;36(11):2137–2143.
  • Mackenzie B, Garrick MD. Iron imports: II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G981–G986.
  • Theil EC. Ferritin: at the crossroads of iron and oxygen metabolism. J Nutr. 2003;133(5):1549S– 1553S.
  • De Domenico I, Ward DM, Musci G, et al.. Evidence for the multimeric structure of ferroportin. Blood. 2007;109(5):2205–2209.
  • Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–297.
  • Casey JL, Hentze MW, Koeller DM, et al.. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 1988;240(4854):924–928.
  • Leibold EA, Munro HN. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5’ untranslated region of ferritin heavy- and light-subunit mRNAs. Proc Natl Acad Sci U S A. 1988;85(7):2171–2175.
  • Mullner EW, Kuhn LC. A stem-loop in the 3’ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell. 1988;53(5):815–825.
  • Chen JJ. Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood. 2007;109(7):2693–2699.
  • Liu S, Bhattacharya S, Han A, et al.. Haem-regulated eIF2alpha kinase is necessary for adaptive gene expression in erythroid precursors under the stress of iron deficiency. Br J Haematol. 2008;143(1):129–137.
  • Andrews NC. Iron metabolism: iron deficiency and iron overload. Annu Rev Genomics Hum Genet. 2000;1:75–98.
  • Frazer DM, Anderson GJ. The orchestration of body iron intake: how and where do enterocytes receive their cues? Blood Cells Mol Dis. 2003;30(3):288–297.
  • De Domenico I, Ward DM, Kaplan J. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol. 2008;9(1):72–81.
  • MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10(6):997–1030.
  • Yang F, Liu XB, Quinones M, et al.. Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J Biol Chem. 2002;277(42):39786–39791.
  • Donovan A, Lima CA, Pinkus JL, et al.. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1(3):191–200.
  • Knutson MD, Oukka M, Koss LM, et al.. Iron release from macrophages after erythrophagocytosis is upregulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci U S A. 2005;102(5):1324–1328.
  • Ganz T. Cellular iron: ferroportin is the only way out. Cell Metab. 2005;1(3):155–157.
  • Park CH, Valore EV, Waring AJ, et al.. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276(11):7806–7810.
  • Hunter HN, Fulton DB, Ganz T, et al.. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002;277(40):37597–37603.
  • Krause A, Neitz S, Magert HJ, et al.. LEAP-1, a novel highly disulfidebonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480(2–3):147–150.
  • Loreal O, Haziza-Pigeon C, Troadec MB, et al.. Hepcidin in iron metabolism. Curr Protein Pept Sci. 2005;6(3):279–291.
  • Ganz T. Hepcidin—a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol. 2005;18(2):171–182.
  • De Domenico I, Ward DM, Langelier C, et al.. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell. 2007;18(7):2569–2578.
  • De Domenico I, Lo E, Ward DM, et al.. Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc Natl Acad Sci U S A. 2009;106(10):3800–3805. Erratum in: Proc Natl Acad Sci U S A. 2012;109(19):7583–7586.
  • De Domenico I, Zhang TY, Koening CL, et al.. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest. 2010;120(7):2395–2405.
  • Ross SL, Tran L, Winters A, et al.. Molecular mechanism of hepcidin-mediated ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT. Cell Metab. 2012;15(6):905–917.
  • Qiao B, Sugianto P, Fung E, et al.. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 2012;15(6):918–924.
  • Ganz T, Nemeth E. Iron Metabolism: Interactions with normal and disordered erythropoiesis. Cold Spring Harb Perspect. 2012;2(5):a011668–a011680.
  • Nemeth E, Rivera S, Gabayan V, et al.. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113(9):1271–1276.
  • Nicolas G, Chauvet C, Viatte L, et al.. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110:1037–1044.
  • Pigeon C, Ilyin G, Courselaud B, et al.. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(11):7811–7819.
  • Pak M, Lopez MA, Gabayan V, et al.. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108(12):3730–3735.
  • Vokurka M, Krijt J, Sulc K, et al.. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol Res. 2006;55(6):667–674.
  • Mastrogiannaki M, Matak P, Mathieu JR, et al.. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica. 2012;97(6):827–834.
  • Ashby DR, Gale DP, Busbridge M, et al.. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Haematologica. 2010;95(3):505–508.
  • Arabul M, Gullulu M, Yilmaz Y, et al.. Influence of erythropoietin therapy on serum prohepcidin levels in dialysis patients. Med Sci Monit. 2009;15(11):CR583-CR587.
  • Ganz T, Olbina G, Girelli D, et al.. Immunoassay for human serum hepcidin. Blood. 2008;112(10):4292–4297.
  • Paesano R, Berlutti F, Pietropaoli M, et al.. Lactoferrin efficacy versus ferrous sulfate in curing iron disorders in pregnant and non-pregnant women. Int J Immunopathol Pharmacol. 2010;23(2):577–587.
  • Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108(9):3204–3209.
  • Verga Falzacappa MV, Vujic Spasic M, Kessler R, et al.. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood. 2007;109(1):353–358.
  • Lee P, Peng H, Gelbart T, et al.. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A. 2005;102(6):1906–1910.
  • Weinstein DA, Roy CN, Fleming MD, et al.. Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood. 2002;100(10):3776–3781.
  • Ludwiczek S, Aigner E, Theurl I, et al.. Cytokine-mediated regulation of iron transport in human monocytic cells. Blood. 2003;101(10):4148–4154.
  • School TO. Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr. 2005;81(5):1218S–1222S.
  • Cheng Y, Zak O, Aisen P, et al.. Structure of the human transferrin receptor-transferrin complex. Cell. 2004;116(4):565–576.
  • Bradley J, Leibold EA, Harris ZL, et al.. Influence of gestational age and fetal iron status on IRP activity and iron transporter protein expression in third-trimester human placenta. Am J Physiol Regul Integr Comp Physiol. 2004;287(4):R894–R901.
  • Harris ED. New insights into placental iron transport. Nutr Rev. 1992;50(11):329–331.
  • Abrams ET, Meshnick SR. Malaria during pregnancy in endemic areas: a lens for examining maternal-fetal conflict. Am J Hum Biol. 2009;21(5):643–650.
  • Bastin J, Drakesmith H, Rees M, et al.. Localisation of proteins of iron metabolism in the human placenta and liver. Br J Haematol. 2006;134(5):532–543.
  • Abrams ET, Kwiek JJ, Mwapasa V, et al.. Malaria during pregnancy and foetal haematological status in Blantyre, Malawi. Malar J. 2005;4:39–46.
  • Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006;26:323–342.
  • Miller JL. Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med. 2012. doi: 10.1101/cshperspect.a011866.
  • Perez EM, Hendricks MK, Beard JL, et al.. Mother-infant interactions and infant development are altered by maternal iron deficiency anemia. J Nutr. 2005;135(4):850–855.
  • Khalafallah AA, Dennis AE. Iron deficiency anaemia in pregnancy and postpartum: pathophysiology and effect of oral versus intravenous iron therapy. J Pregnancy. 2012;2012:630519–630528.
  • Kadiiska MB, Burkitt MJ, Xiang QH, et al.. Iron supplementation generates hydroxyl radical in vivo. An ESR spin-trapping investigation. J Clin Invest. 1995;96(3):1653–1657.
  • Oldenburg B, Van Berge Henegouwen GP, Rennick D. Iron supplementation affects the production of pro-inflammatory cytokines in IL-10 deficient mice. Eur J Clin Invest. 2000;30(6):505–510.
  • Reifen R, Matas Z, Zeidel L, et al.. Iron supplementation may aggravate inflammatory status of colitis in a rat model. Dig Dis Sci. 2000;45(2):394–397.
  • Paesano R, Torcia F, Berlutti F, et al.. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women. Biochem Cell Biol. 2006;84(3):377–380.
  • Paesano R, Pietropaoli M, Gessani S, et al.. The influence of lactoferrin, orally administered, on systemic iron homeostasis in pregnant women suffering of iron deficiency and iron deficiency anaemia. Biochimie. 2009;91(1):44–51.
  • Provenzano R, Schiller B, Rao M, et al.. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4(2):386–393.
  • Schümann K, Ettle T, Szegner B, et al.. On risks and benefits of iron supplementation recommendations for iron intake revisited. J Trace Elem Med Bio. 2007;21(3):147–168.
  • Palacios S. The management of iron deficiency in menometrorrhagia. Gynecol Endocrinol. 2011;27(Suppl 1):1126–1130.
  • Rizvi S, Schoen RE. Supplementation with oral vs. intravenous iron for anemia with IBD or gastrointestinal bleeding: is oral iron getting a bad rap? Am J Gastroenterol. 2011;106(11):1872–1879.
  • Ortiz R, Toblli JE, Romero JD, et al.. Efficacy and safety of oral iron(III) polymaltose complex versus ferrous sulfate in pregnant women with iron-deficiency anemia: a multicenter, randomized, controlled study. J Matern Fetal Neonatal Med. 2011;24(11):1–6.
  • Zaim M, Piselli L, Fioravanti P, et al.. Efficacy and tolerability of a prolonged release ferrous sulphate formulation in iron deficiency anaemia: a non-inferiority controlled trial. Eur J Nutr. 2012;51(2):221–229.
  • Kearney PA, Rapp RP. Red blood cell transfusions and nosocomial pneumonia. Crit Care Med. 2007;35(2):682–683.
  • Sazawal S, Dhingra U, Dhingra P, Hiremath, et al.. Micronutrient fortified milk improves iron status, anemia and growth among children 1–4 years: a double masked, randomized, controlled trial. PLoS One. 2010;5(8):e12167–e12174.
  • Oelofse A, Van Raaij JM, Benade AJ, et al.. The effect of a micronutrient-fortified complementary food on micronutrient status, growth and development of 6- to 12-month-old disadvantaged urban South African infants. Int J Food Sci Nutr. 2003;54(5):399–407.
  • Rivera JA, Shamah T, Villalpando S, et al.. Effectiveness of a large-scale iron-fortified milk distribution program on anemia and iron deficiency in low-income young children in Mexico. Am J Clin Nutr. 2010;91(2):431–439.
  • Eichler K, Wieser S, Rüthemann I, et al.. Effects of micronutrient fortified milk and cereal food for infants and children: a systematic review. BMC Public Health. 2012;12(1):506–518.
  • Nogueira Arcanjo FP, Roberto Santos P, Arcanjo CP, et al.. Use of iron-fortified rice reduces anemia in infants. J Trop Pediatr. In press 2012 May 29. [Epub ahead of print]
  • Barbosa TN, Taddei JA, Palma D, et al.. Double-blind randomized controlled trial of rolls fortified with microencapsulated iron. Rev Assoc Med Bras. 2012;58(1):118–124.
  • Sazawal S, Black RE, Ramsan M, et al.. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006;367(9505):133–143.
  • Johnson EE, Wessling-Resnick M. Iron metabolism and the innate immune response to infection. Microbes Infect. 2012;14(3):207–216.
  • Murray MJ, Murray AB, Murray MB, et al.. The adverse effect of iron repletion on the course of certain infections. Br Med J. 1978;2(6145):1113–1115.
  • Moyo VM, Gangaidzo IT, Gordeuk VR, et al.. Tuberculosis and iron overload in Africa: a review. Cent Afr J Med. 1997;43:334–339.
  • Gangaidzo IT, Moyo VM, Mvundura E, et al.. Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis. 2001;184(7):936–939.
  • Oppenheimer SJ, Gibson FD, Macfarlane SB, et al.. Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. Trans R Soc Trop Med Hyg. 1986;80(4):603–612.
  • Bhargava A. Iron status, malaria parasite loads and food policies: evidence from sub-Saharan Africa. Econ Hum Biol. In press 2012 Apr 30. [Epub ahead of print]
  • Menendez C, Kahigwa E, Hirt R, et al.. Randomised placebo-controlled trial of iron supplementation and malaria chemoprophylaxis for prevention of severe anaemia and malaria in Tanzanian infants. Lancet. 1997;350(9081):844–885.
  • Okebe JU, Yahav D, Shbita R, et al.. Oral iron supplements for children in malaria-endemic areas. [Cochrane review] In: The Cochrane Library, Issue 10, 2011.
  • Hafalla JC, Silvie O, Matuschewski K. Cell biology and immunology of malaria. Immunol Rev. 2011;240(1):297–316.
  • Lamikanra AA, Brown D, Potocnik A, et al.. Malarial anemia: of mice and men. Blood. 2007;110(1):18–28.
  • D'Elios MM, Benagiano M, Della Bella C, et al.. T-cell response to bacterial agents. J Infect Dev Ctries. 2011;5(9):640–645.
  • Kurtzhals JA, Adabayeri V, Goka BQ, et al.. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared to cerebral and uncomplicated malaria. Lancet. 1998;351(9118):1768–1772.
  • Othoro C, Lal AA, Nahlen B, et al.. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J Infect Dis. 1999;179(1):279–282.
  • Prentice AM, Doherty CP, Abrams SA, et al.. Hepcidin is the major predictor of erythrocyte iron incorporation in anemic African children. Blood. 2012;119(8):1922–1928.
  • Rovira-Vallbona E, Moncunill G, Bassat Q, et al.. Low antibodies against Plasmodium falciparum and imbalanced pro-inflammatory cytokines are associated with severe malaria in Mozambican children: a case-control study. Malar J. 2012;11(1):181–207.
  • Howard CT, McKakpo US, Quakyi IA, et al.. Relationship of hepcidin with parasitemia and anemia among patients with uncomplicated Plasmodium falciparum malaria in Ghana. Am J Trop Med Hyg. 2007;77(4):623–626.
  • de Mast Q, Nadjm B, Reyburn H, et al.. Assessment of urinary concentrations of hepcidin provides novel insight into disturbances in iron homeostasis during malarial infection. J Infect Dis. 2009;199(2):253–262.
  • de Mast Q, Syafruddin D, Keijmel S, et al.. Increased serum hepcidin and alterations in blood iron parameters associated with asymptomatic P. falciparum and P. vivax malaria. Haematologica. 2010;95(7):1068–1074.
  • Armitage AE, Eddowes LA, Gileadi U, et al.. Hepcidin regulation by innate immune and infectious stimuli. Blood. 2011;118(15):4129–4139.
  • Casals-Pascual C, Huang H, Lakhal-Littleton S, et al.. Hepcidin demonstrates a biphasic association with anemia and inflammation in acute Plasmodium falciparum malaria. Haematologica. 2012;97:1–16.
  • Marguti I. Control of immunopathology during Plasmodium infection by hepcidin. Med Hypotheses. 2012;78(2):250–253.
  • Dellicour S, Tatem AJ, Guerra CA, et al.. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med. 2010;7(1):e1000221–e1000230.
  • Allen LH, Rosado JL, Casterline JE, et al.. Lack of hemoglobin response to iron supplementation in anemic mexican preschoolers with multiple micronutrient deficiencies. Am J Clin Nutr. 2000;71(6):1485–1494.
  • Elhassan EM, Abbaker AO, Haggaz AD, et al.. Anaemia and low birth weight in Medani, hospital Sudan. BMC Res Notes. 2010;3:181–185.
  • Bennett WA, Lagoo-Deenadayalan S, Whitworth NS, et al.. First-trimester human chorionic villi express both immunoregulatory and inflammatory cytokines: a role for interleukin-10 in regulating the cytokine network of pregnancy. Am J Reprod Immunol. 1999;41(1):70–78.
  • Urban BC, Ing R, Stevenson MM. Early interactions between blood-stage Plasmodium parasites and the immune system. Curr Top Microbiol Immunol. 2005;297:25–70.
  • Amante FH, Good MF. Prolonged Th1-like response generated by a Plasmodium yoelii specific T cell clone allows complete clearance of infection in reconstituted mice. Parasite Immunol. 1997;19(3):111–126.
  • Wang R, Charoenvit Y, Corradin G, et al.. Protection against malaria by Plasmodium yoelii sporozoite surface protein 2 linear peptide induction of CD4+ T cell- and IFN-gamma-dependent elimination of infected hepatocytes. J Immunol. 1996;157(9):4061–4067.
  • Wilson NO, Bythwood T, Solomon W, et al.. Elevated levels of IL-10 and G-CSF associated with asymptomatic malaria in pregnant women. Infect Dis Obstet Gynecol. 2010;2010: 317430–317436.
  • Bisseye C, van der Sande M, Morgan WD, et al.. Plasmodium falciparum infection of the placenta impacts on the T helper type 1 (Th1)/Th2 balance of neonatal T cells through CD4(+)CD25(+) forkhead box P3(+) regulatory T cells and interleukin-10. Clin Exp Immunol. 2009;158(3):287–293.
  • Orish VN, Onyeabor OS, Boampong JN, et al.. Adolescent pregnancy and the risk of Plasmodium falciparum malaria and anaemia-a pilot study from Sekondi-Takoradi metropolis, Ghana. Acta Trop. 2012;123(3):244–248.
  • Clerk CA, Bruce J, Greenwood B, et al.. The epidemiology of malaria among pregnant women attending antenatal clinics in an area with intense and highly seasonal malaria transmission in northern Ghana. Trop Med Int Health. 2009;14(6):688–695.
  • Enato EF, Mens PF, Okhamafe AO, et al.. Plasmodium falciparum malaria in pregnancy: prevalence of peripheral parasitaemia, anaemia and malaria care-seeking behaviour among pregnant women attending two antenatal clinics in Edo State, Nigeria. J Obstet Gynaecol. 2009;29(4):301–306.
  • Menendez C, Ordi J, Ismail MR, et al.. The impact of placental malaria on gestational age and birth weight. J Infect Dis. 2000;181(5):1740–1745.
  • Fried M, Muga RO, Misore AO, et al.. Malaria elicits type 1 cytokines in the human placenta: IFN-gamma and TNF-alpha associated with pregnancy outcomes. J Immunol. 1998;160(5):2523–2530.
  • Abrams ET, Brown H, Chensue SW, et al.. Host response to malaria during pregnancy: placental monocyte recruitment is associated with elevated beta chemokine expression. J Immunol. 2003;170(5):2759–2764.
  • Celada A, Cruchaud A, Perrin LH. Opsonic activity of human immune serum on in vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clin Exp Immunol. 1982;47(3):635–644.
  • Rogerson SJ, Brown HC, Pollina E, et al.. Placental TNF is associated with placental malaria and low birth weight in Malawian women. Infect Immun. 2003;71(1):267–270.
  • Kabyemela ER, Muehlenbachs A, Fried M, et al.. Maternal peripheral blood level of IL-10 as a marker for inflammatory placental malaria. Malar J. 2008;7:26–31.
  • Awasthi A, Kumar A, Upadhyay SN, et al.. Nitric oxide protects against chloroquine resistant Plasmodium yoelii nigeriensis parasites in vitro. Exp Parasitol. 2003;105(3–4):184–191.
  • Weiss G, Werner-Felmayer G, Werner ER, et al.. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med. 1994;180(3):969–976.
  • Johnson EE, Sandgren A, Cherayil BJ, et al.. Role of ferroportin in macrophage-mediated immunity. Infect Immun. 2010;78(12):5099–5106.
  • Wei SQ, Fraser W, Luo ZC. Inflammatory cytokines and spontaneous preterm birth in asymptomatic women: a systematic review. Obstet Gynecol. 2010;116(2):393–401.
  • Baker EN, Rumball SV, Anderson BF. Transferrins: insights into structure and function from studies on lactoferrin. Trends Biochem Sci. 1987;12:350–353.
  • Baker EN, Baker HM. Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci. 2005;62:2531–2539.
  • Anderson BF, Baker HM, Dodson EJ, et al.. Structure of human lactoferrin at 3.2-A resolution. Proc Natl Acad Sci U S A. 1987;84(7):1769–1773.
  • Anderson BF, Baker HM, Norris GE, et al.. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989;209(4):711–734.
  • Grossmann JG, Neu M, Pantos E, et al.. X-ray solution scattering reveals conformational changes upon iron uptake in lactoferrin, serum and ovotransferrins. J Mol Biol. 1992;225(3):811–819.
  • Masson PL, Heremans JF. Lactoferrin in milk from different species. Comp Biochem Physiol. 1971;39(1):119–129.
  • Masson PL, Heremans JF, Prignot JJ, et al.. Immunohistochemical localization and bacteriostatic properties of an iron-binding protein from bronchial mucus. Thorax. 1966;21(6):538–544.
  • Mason DY, Taylor CR. Distribution of transferrin, ferritin, and lactoferrin in human tissues. J Clin Pathol. 1978;31(4):316–327.
  • Masson PL, Heremans JF, Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. 1969;130(3):643–658.
  • Schaible UE, Kaufmann HE. Iron and microbial infection. Nat Rev Microbiol. 2004;2(12):946–953. Erratum in Nat Rev Microbiol. 2005;3(3):268.
  • Singh PK, Parsek MR, Greenberg EP, et al.. A component of innate immunity prevents bacterial biofilm development. Nature. 2002;417(6888):552–555.
  • Berlutti F, Morea C, Battistoni A, et al.. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immun Pharmacol. 2005;18(4):661–670.
  • Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010;1(5):440–464.
  • Valenti P, Antonini G. Lactoferrin: an important host defence against microbial and viral attack. Cell Mol Life Sci. 2005;62(22):2576–2587.
  • Bullen JJ, Rogers HJ, Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infections in infants. Br Med J. 1972;1(5792):69–75.
  • Fritsch G, Sawatzki G, Treumer J, et al.. Plasmodium falciparum inhibition in vitro with lactoferrin, desferrithiocin, and desferricrocin. Exp Parasitol. 1987;63(1):1–9.
  • Weinberg GA. Iron chelators as therapeutic agents against Pneumocystis carinii. Antimicrob Agents Chemother. 1994;38(5):997–1003.
  • Omata Y, Satake M, Maeda R, et al.. Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin. J Vet Med Sci. 2001;63(2):187–190.
  • Shakibaei M, Frevert U. Dual interaction of the malaria circumsporozoite protein with the low density lipoprotein receptor-related protein (LRP) and heparan sulfate proteoglycans. J Exp Med. 1996;184(5):1699–1711.
  • Legrand D, Elass E, Carpentier M, et al.. Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci. 2005;62(22):2549–2559.
  • Berlutti F, Schippa S, Morea C, et al.. Lactoferrin downregulates pro-inflammatory cytokines upexpressed in intestinal epithelial cells infected with invasive or noninvasive Escherichia coli strains. Biochem Cell Biol. 2006;84(3):351–357.
  • Valenti P, Catizone A, Pantanella F, et al.. Lactoferrin decreases inflammatory response by cystic fibrosis bronchial cells invaded with Burkholderia cenocepacia iron-modulated biofilm. Int J Immunopathol Pharmacol. 2011;24(4):1057–1068.
  • Puddu P, Valenti P, Gessani S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie. 2009;91(1):11–18.
  • Puddu P, Latorre D, Carollo M, et al.. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells. PLoS One. 2011;6(7):e22504–e22517.
  • Kim CW, Lee TH, Park KH, et al.. Human lactoferrin suppresses TNF-α-induced intercellular adhesion molecule-1 expression via competition with NF-κB in endothelial cells. FEBS Lett. 2012;586(3):229–234.
  • Paesano R, Berlutti F, Pietropaoli M, et al.. Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women. Biometals. 2010;23(3):411–417.
  • Ganz T, Nemeth E. Iron sequestration and anemia of inflammation. Semin Hematol. 2009;46(4):387–393.
  • Oppenheimer SJ. Iron and its relation to immunity and infectious disease. J Nutr. 2001;131(2):616S–633S.
  • McDonald CJ, Jones MK, Wallace DF, et al.. Increased iron stores correlate with worse disease outcomes in a mouse model of schistosomiasis infection. PLoS One. 2010;9;5(3):e9594–e95100.
  • Paesano R, Pietropaoli M, Berlutti F, et al.. Bovine lactoferrin in preventing preterm delivery associated with sterile inflammation. Biochem Cell Biol. 2012;90(3):468–475.
  • Dlaska M, Weiss G. Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression. J Immunol. 1999;162(10):6171–6177.
  • Vanholder R, Ringoir S. Infectious morbidity and defects of phagocytic function in end-stage renal disease: a review. J Am Soc Nephrol. 1993;3(9):1541–1554.
  • Ravasi G, Pelucchi S, Trombini P, et al.. Hepcidin expression in iron overload diseases is variably modulated by circulating factors. PLoS One. 2012;7(5):e36425–e36430.
  • De Domenico I, Ward DM, di Patti MC, et al.. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007;26(12):2823–2831.
  • Wessling-Resnick M. Iron Homeostasis and the Inflammatory Response. Annu Rev Nutr. 2010;30:105–122.
  • Theurl I, Schroll A, Sonnweber T, et al.. Pharmacologic inhibition of hepcidin expression reverses anemia of chronic inflammation in rats. Blood. 2011;118(18):4977–4984.
  • Song SN, Tomosugi N, Kawabata H, et al.. Down-regulation of hepcidin resulting from long-term treatment with an anti-IL-6 receptor antibody (tocilizumab) improves anemia of inflammation in multicentric Castleman disease. Blood. 2010;116(18):3627–3634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.