Publication Cover
Acta Clinica Belgica
International Journal of Clinical and Laboratory Medicine
Volume 56, 2001 - Issue 1
33
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

HERITABLE COLLAGEN DISORDERS: FROM GENOTYPE TO PHENOTYPE

&
Pages 10-16 | Published online: 09 Jan 2014

REFERENCES

  • Beighton P, De Paepe A, Danks D et al. International Nosology of Heritable Disorders of Connective Tissue, Berlin, 1986. Am J Med Genet. 1988; 29: 581–94.
  • Beighton P, De Paepe A, Hall JG et al. Molecular nosology of heritable disorders of connective tissue. Am J Med Genet. 1992; 2: 431–48.
  • Kuivaniemi H, Tromp G, Prockop DJ. Mutations in fibrillar col-lagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of disease of bone, cartilage, and blood vessels. Human MutaL 1997; 9: 300–15.
  • Jöbsis GJ, Keizers H, Vreijling J et al. Type VI collagen muta-tions in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nature Genet. 1996; 14: 113–5.
  • Van Der Rest M, Garrone R. Collagen family of proteins. Faseb 1 1991; 5: 2814–23.
  • Kielty CM, Hopkinson I, Grant ME. Collagen: The collagen family: structure, assembly and organization in the extracellular matrix. In: Royce PM and Steinmann B, eds. Connective Tissue, and its Heritable Disorders. Molecular, genetic and medical as-pects. Wiley-Liss Inc. 1993; 103–147.
  • Brown JC, Timpl R. The collagen superfamily. Int Arch Allergy ImmunoL 1995; 107: 484–90.
  • Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci. 1990; 95: 649–57.
  • Cole WG. Collagen genes: Mutations affecting collagen struc-ture and expression. Progress Nuc Acids Res and Mol Biol. 1994; 47: 29–80.
  • Tilstra DJ, Byers PH. Molecular basis of hereditary disorders of connective tissue. Annu Rev Med. 1994; 45: 149–63.
  • Chu M-L, Prockop D. Collagen: Gene structure. In: Royce PM and Steinmann B, eds. Connective Tissue, and its Heritable Dis-orders. Molecular, genetic and medical aspects. Wiley-Liss Inc. 1993; 149–165.
  • Sillence DO, Senn A, Danks DM. Genetic heterogeneity in os-teogenesis imperfecta. J Med Genet. 1979; 16: 101–116.
  • Sillence DO, Barlow KK, Garber AP, Hall JG, Rimoin DL. Os-teogenesis imperfecta type II delineation of the phenotype with reference to genetic heterogeneity. Am J Med Genet. 1984; 17: 407–23.
  • Byers PH. Osteogenesis Imperfecta. In: Royce PM, Steinmann B, eds. Connective tissue, and its Heritable Disorders: molecu-lar, genetic and medical aspects. New York: Wiley-Liss. 1993; 317–350.
  • Willing MC, Deschenes SP, Slayton RL, Roberts EJ. Premature chain termination is an unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. Am J Hum Genet. 1996; 59: 799–809.
  • Körkko J, Ala-Kokko L, De Paepe A, Nuytinck L, Earley J, Prockop DJ. Analysis of the COL1A1 and COL1A2 genes by PCR amplification and scanning by conformation-sensitive gel electrophoresis identifies only COL1A1 mutations in 15 patients with Osteogenesis Imperfecta type I: Identification of common sequences of null-allele mutations. Am J Hum Genet. 1998; 62: 98–110.
  • Byers PH, Tsipouras P. Bonadio JF, Starman BJ, Schwartz RC. Perinatal lethal osteogenesis imperfecta (0I type II): A biochemi-cally heterogeneous disorder usually due to new mutations in the genes for type I collagen. Am J Hum Genet. 1988; 42: 237–48.
  • Byers PH. Collagens: building blocks at the end of the develop-ment line. Clin Genet. 2000; 58: 270–79.
  • Nuytinck L, Dalgleish R, Spotila L, Renard JP, Van Regemorter N, De Paepe A. Substitution of glycine-661 by serine in the al (I) and a2(I) chains of type I collagen results in different clinical and biochemical phenotypes. Hum Genet. 1996; 97: 324–29.
  • Spotila LD, Constantinou CD, Sereda L, Ganguly A, Riggs BL, Prockop DJ. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: Evidence for phenotypic and genotypic overlap with mild osteogenesis im-perfecta. Proc Natl Acad Sci USA. 1991; 88: 5423–7.
  • Nuytinck L, Wettinck K, Freund M, Van Maldergem L, Fabry G, De Paepe A. OI phenotypes resulting from serine for glycine substitutions in the a2(I) collagen chain. Eur J Hum Genet. 1997; 5: 161–7.
  • Cohn DH, Starman BJ, Blumberg B, Byers PH. Recurrence of lethal Osteogenesis Imperfecta due to parental mosaïcism for a dominant mutation in a human type I collagen gene (COL1A1). Am J Hum Genet. 1990; 46: 591–601.
  • De Paepe A, Nuytinck L, Raes M, Fryns JP. Homozygosity by descent for a COL1A2 mutation in two sibs with severe Osteoge-nesis Imperfecta and mild clinical expression in the heterozy-gotes. Hum Genet. 1997; 99: 478–83.
  • Pepin M, Atkinson M, Starman BJ, Byers PH. Strategies and outcomes of prenatal diagnosis for osteogenesis imperfecta: re-view of biochemical and molecular studies completed in 129 pregnancies. Pren Diagn. 1997; 17: 559–70.
  • Nuytinck L, Coppin C, De Paepe A. A 4 bp insertion polymor-phism in the 3' UTR of the COL1A1 gene is highly informative for null-allele testing in patients with OI type I. Matrix Biol. 1998; 16: 349–352.
  • Cole WG, Evans R, Sillence DO. The clinical features of Ehl-ers-Danlos syndrome type VII due to a deletion of 24 amino acids from the pro-al (I) chain of type I procollagen. J Med Genet. 1987; 24: 698–701.
  • Byers PH, Duvic M, Atkinson M et al. Ehlers-Danlos syndrome type VILA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am J Med Genet. 1997; 72: 94–105.
  • Nusgens BV, Verellen-Dumoulin Ch, Hermanns-L8 D et al. Evi-dence for a relationship between Ehlers-Danlos type VII(C) in humans and bovine dermatosparaxis. Nature Genet. 1992; 1:214–7.
  • Smith LT, Wertelecki W, Milstone LM et al. Human dermatospa-raxis: A form of Ehlers-Danlos syndrome that results from fail-ure to remove the amino-terminal propeptide of type I procollagen. Am J Hum Genet. 1992; 51: 235–44.
  • Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup R. Ehlers-Danlos syndromes: Revised nosology, Villefranche 1997. Am J Med Genet. 1998; 77: 31–7.
  • Pope FM, Martin GR, Lichtenstein JR et al. Patients with Ehlers-Danlos syndrome type IV lack type III collagen. Proc Natl Acad Sci USA. 1975; 72: 1314–16.
  • Nicholls AC, De Paepe A, Narcisi Petal. Linkage of a polymor-phic marker for the type III collagen gene (COL3A1) to aptypical autosomal dominant Ehlers-Danlos syndrome type IV in a large Belgian pedigree. Hum Genet. 1988; 78: 276–81.
  • Steinmann B, Royce PM, Superti-Furga A. The Ehlers-Danlos Syndrome. In: Royce PM and Steinmann B, eds. Connective Tis-sue, and its Heritable Disorders. Molecular, genetic and medical aspects. Wiley-Liss Inc. 1993; 351–407.
  • Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascu-lar type. New Engl J Med. 2000; 342: 673–80.
  • Liu X, Wu H, Byrne M, Krane S, Jaenisch R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardio-vascular development. Proc Natl Acad Sci USA. 1997. 94: 1852–6.
  • De Paepe A. Ehlers-Danlos syndrome type IV: clinical and mo-lecular aspects and guidelines for diagnosis and management. Dermatol. 1994; 189 Suppl 2: 21–5.
  • Loughlin J, Irven C, Hardwick LJ et al. Linkage of the gene that encodes the al chain of type V collagen (COL5A1) to type II Ehlers-Danlos syndrome (EDS II). Hum Mol Genet. 1995; 4: 1649–51.
  • Andrikopoulos K, Liu X, Keene DR, Jaenisch R, Ramirez F. Targeted mutation in the COL5A2 gene reveals a regulatory role for type V collagen during matrix assembly. Nature Genet. 1995; 9:31–6.
  • Linsenmayer TF, Gibney E, Igoe F et al. Type V collagen: mo-lecular structure and fibrillar organization of the chicken al (V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol. 1993; 121: 1181–9.
  • De Paepe A, Nuytinck L, Hausser I, Anton-Lamprecht I, Naeyaert J-M. Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes land II. Am J Hum Genet. 1997; 60: 547–54.
  • Michalickova K, Susie M, Willing MC, Wenstrup RJ, Cole WG. Mutations of the a2(V) chain of type V collagen impair matrix assembly and produce Ehlers-Danlos syndrome type I. Hum Molec Genet. 1998; 7: 249–55.
  • Burrows NP, Nicholls AC, Richards AJ et al. A point mutation in an intronic branch site results in aberrant splicing of COL5A1 and in Ehlers-Danlos syndrome type II in two British families. Am J Hum Genet. 1998; 63: 390–8.
  • Schwarze U, Atkinson M, Hoffman GG, Greenspan DS, Byers PH. Null alleles of the COL5A1 gene of type V collagen are a cause of the classical form of Ehlers-Danlos syndrome (types I and II). Am J Hum Genet. 2000; 66: 1757–65.
  • Wenstrup RJ, Florer JB, Willing MC et al. COL5A1 haploinsufficiency is a common molecular mechanism underly-ing the classical form of EDS. Am J Hum Genet. 2000; 66: 1766–76.
  • Nuytinck L, Freund M, Lagae L, Pierard GE, Hermanns-Le T, De Paepe A. Classical Ehlers-Danlos Syndrome caused by a mutation in type I collagen. Am J Hum Genet. 2000; 66: 1398–1402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.