32
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Resistance to β-Lactams - The Permutations

Pages 525-535 | Published online: 18 Jul 2013

REFERENCES

  • Craig, W. Penicillins. In Gorbach SL, Bartlett JG, Blacklow NR, eds. Infectious Diseases. 2nd ed. London, Saunders 1998: 173-185.
  • Nathwani D, Wood MJ. Penicillins: a current review of their clinical pharmacology and therapeutic use. Drugs 1993; 45 (6): 866–894.
  • Moellering Jr RC, Sentochnik DE. Cephalosporins. In Gorbach SL, Bartlett JG, Blacklow NR, eds. Infectious Diseases. 2nd ed. London, Saunders 1998: 185-196.
  • Sykes RB, Bonner DP, Bush K, Georgopapadakou NH. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob Agents Chemother 1982; 21 (1): 85–92.
  • Bush K, Mobashery S. How β-lactamases have driven pharmaceutical drug discovery: from mechanistic knowledge to clinical circumvention. In Rosen B, Rosen SM, eds. Resolving the antibiotic paradox. New York, Kluwer Academic/Plenum Publishers 1998: 71-98.
  • Wiedemann B, Pfeifle D, Wiegand I, Janas E. Beta-lac-tamase induction and cell wall recycling in Gram-negative bac-teria. Drug Resist Update 1998; 4: 223–226.
  • Bush K, Jacoby GA, Medeiros AA. A functional classifi-cation scheme for β-lactamases and its correlation with molec-ular structure. Antimicrob Agents Chemother 1995; 39 (6): 1211–1233.
  • Bush K. New β-lactamases in Gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 2001; 32 (7): 1085–1089.
  • Payne DJ, Woodford N, Amyes SGB. Characterization of the plasmid mediated beta-lactamase BIL-1. J Antimicrob Chemother 1992; 30 (2): 119–127.
  • Livermore DM. Acquired carbapenemases. J Antimicrob Chemother 1997; 39 (6): 673–679.
  • Thomson KS, Morland ES. Version 2000: the new 13-lactamases of Gram-negative bacteria at the dawn of the new millenium. Microbes Infect 2000; 2 (10): 1225–1235.
  • Amyes AKB, Amyes SGB. Stability of faropenem to beta-lactamases. [abstr]. 42nd ICAAC, San Diego, USA, September 27-30, 2002: 1842.
  • Bauernfeind A, Schneider I, Dalhoff A. Activity of faropenem against multiresistant enterobacteriaceae. [abstr]. 40th ICAAC, Toronto, Canada, September 17-20, 2000: 366.
  • Bauernfeind, A, Schneider I, Dalhoff A. Susceptibility of multi-resistant Enterobacteriaceae to faropenem [abstr]. 11th ECCMID, Istanbul, Turkey, April 1-4, 2001: 1292.
  • Black JA, Moland ES, Lockhart TJ, Lister PD, Thomson KS. Faropenem: activity against ESBL, AmpC and other beta-lactamase-producing Enterobacteriaceae. 41” ICAAC, Chicago, USA, December 16-19, 2001: 791.
  • Livermore DM, Woodford N. Carbapenemases: a prob-lem in waiting? Curr Opin Microbiol 2000; 3 (5): 489–495.
  • Rasmussen BA, Bush K. Carbapenem-hydrolyzing 13-lactamases. Antimicrob Agents Chemother 1997; 41 (2): 223–232.
  • Bush K. The evolution of β-lactamases. In: Antibiotic resistance: origins, evolution, selection and spread. Chichester: Wiley (Ciba Foundation Symposium 207). 1997: 152-166.
  • Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudo monas aerugi-nosa. Antimicrob Agents Chemother 1991; 35 (1): 147–151.
  • Yoshimura F, Nikaido H. Diffusion of β-lactam antibi-otics through porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 1985; 27 (1): 84–92.
  • Nikaido H. Outer membrane barrier as a mechanism of antibiotic resistance. Antimicrob Agents Chemother 1989; 33 (11): 1831–1836.
  • Buscher K, Cullman W, Dick W, Opferkuch W. Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob Agents Chemother 1987; 31 (5): 703–708.
  • Livingstone D, Gill MJ, Wise R. Mechanisms of resis-tance to the carbapenems. J Antimicrob Chemother 1995; 35 (1): 1–5.
  • Georgopapadakou NK. Penicillin-binding proteins and bacterial resistance to β-lactams. Antimicrob Agents Chemother 1993; 37 (10): 2045–2053.
  • Ghuysen JM. Penicillin-binding proteins. Wall peptido-glycan assembly and resistance to penicillins: facts, doubts and hopes. J Int Antimicrob Agents 1997; 8: 45–60.
  • Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA 1965; 54 (4): 1133–1141.
  • Spratt BG. Resistance to antibiotics mediated by target alterations. Science 1994; 264 (5157): 338–393.
  • Parr TR Jr, Bryan LE. Mechanisms of resistance of an ampicillin-resistant, P-lactamase-negative clinical isolate of Haemophilus influenzae type b to β-lactam antibiotics. Antimicrob Agents Chemother 1984; 25 (6): 747–753.
  • Eliopoulos GM. Mechanisms of bacterial resistance to antimicrobial drugs. In Gorbach SL, Bartlett JG, Blacklow NR, eds. Infectious Diseases. 2nd ed. London: Saunders. 1998; 319–330.
  • Goossens H, Sprenger MJW. Community acquired infections and bacterial resistance. BMJ 1998; 317 (7159): 654–657.
  • Hermans PW, Sluijter M, Elzenaar K, et al. Penicillin-resistant Streptococcus pneumoniae in the Netherlands: results of a 1-year molecular epidemiologic survey. J Infect Dis 1997; 175 (6): 1413–1422.
  • Tomasz A, Munoz R. β-lactam antibiotic resistance in Gram positive bacteria pathogens of the upper respiratory tract: a brief overview of mechanisms. Microbial Drug Resistance 1995; 1 (2): 103–109.
  • Garcia-Bustos J, A. Tomasz. A biological price of antibiotic resistance: major changes in the peptidoglycan struc-ture of penicillin-resistant pneumococci. [abstr]. Proc Natl Acad Sci USA 1990; 87 (14): 5415–5419.
  • Coffey TJ, Daniels M, McDougal LK, Dowson CG, Tenover FC, Spratt BG. Genetic analysis of clinical isolates of Streptococcus pneumoniae with high level resistance to expanded-spectrum cephalosporins. Antimicrob Agents Chemother 1995; 39 (6): 1306–1313.
  • Jacoby GA. Prevalence and resistance mechanisms of common bacterial respiratory pathogens. Clin Infect Dis 1994; 18 (6): 951–957.
  • Campbell GD, Silberman R. Drug-resistant Streptococcus pneumoniae. Clin Infect Dis 1998; 26 (5): 1188–1195.
  • Dudley M. Bacterial resistance mechanisms to β-lactam antibiotics: assessment of management strategies. Pharmacotherapy 1995; 15(1 Pt 1): 9S-14S.
  • Stapleton P, Wu PJ, King A, Shannon K, French G, Philips I. Incidence and mechanism of resistance to the combi-nation of amoxicillin and clavulanic acid in Escherichia coli. Antimicrob Agents Chemother 1995; 39 (11): 2478–2483.
  • Vedel G, Belaaouaj L, Gilly L, et al. Clinical isolates of Escherichia coli producing TRI β-lactamases: novel TEM-enzymes conferring resistance to β-lactamase inhibitors. J Antimicrob Chemother 1992; 30 (4): 449–462.
  • Vali L, Thomson CJ, Amyes SGB. Haemophilus influenzae: identification of a novel β-lactamase. J Pharm Pharmacol 1994; 46 Suppl 2: 1041.
  • Fung CP, Yeo SF, Livermore DM. Susceptibility of Moraxella catarrhalis isolates to β-lactam antibiotics in rela-tion to β-lactamase pattern. J Antimicrob Chemother 1994; 33 (2): 215–222.
  • Du Plessis M, Capper TP, Klugman KP. In-vitro activi-ty of faropenem against respiratory pathogens and molecular characterisation of BRO β-lactamases from clinical isolates of Moraxella catarrhalis. [abstr]. 40th ICAAC, Toronto, Canada, September 17-20, 2000: 362.
  • Pharmaprojects: Drugs in Development. Richmond, Surrey: PJB Publications Ltd. Accession No: 024899; Update: 20011102. Website: http://www.datastarweb.com/DSP/20020429_163449_f6881_26/WBDoc2/9001/707ea2aa/ Accessed April 29, 2002.
  • Cunha BA. Ertapenem. A review of its microbiologic, pharmacokinetic, and clinical aspects. 2002. Drugs of Today 38 (3). Website: http://www.prous.com/journals/dot/ 20023803/index.cfm/ Accessed October 23, 2002.
  • Pharmaprojects: Drugs in Development. Richmond, Surrey: PJB Publications Ltd. Accession No: 028335; Update: 20020107. Available from http://www.datastarweb.com/DSP/20020429_163449_f6881_26/WBDoc1/6001/91d73efb/ Accessed April 29, 2002.
  • Bryskier A. Penems: new oral β-lactam drugs. Expert Opin Investig Drugs 1995; 4: 705–724.
  • Hamilton-Miller JMT, Smith C. Cefotaxime-resistant Gram-negative bacilli in a university hospital: occurrence, iden-tity, source and sensitivity patterns. Int J Antimicrob Chemother 1995; 5: 195–198.
  • Inoue E, Komoto E, Taniyama Y, Mitsuhashi S. Antibacterial activity of sulopenem, a new parenteral penem antibiotic [Article in Japanese]. Jpn J Antibiot 1996; 49 (4): 338–351.
  • Neu HC, Chin NX, Labthavikul P. The in-vitro activity of a novel penem FCE 22101 compared to other beta-lactam antibiotics. J Antimicrob Chemother 1985; 16 (3): 305-313.
  • Dornbusch K, Kronvall G, Goransson E, Mortsell E. In vitro activity of FCE 22101 against respiratory tract pathogens with reference to production of β-lactamases. J Antimicrob Chemother 1989; 23(suppl C): 31-41.
  • Pharmaprojects: Drugs in Development. Richmond, Surrey: PJB Publications Ltd. Accession No: 023726; Update: 20020315. Available from http://www.datastar-web.com/DSP/20020429_163449_f6881_26/WBDoc1/15001/cfe80fa9/ Accessed April 29, 2002.
  • Pharmaprojects: Drugs in Development. Richmond, Surrey: PJB Publications Ltd. Accession No: 006953; Update: 20020204. Available from http://www.datastar-web.com/DSP/20020429_163449_f6881_26/WBDoc3/15001/3c897add/ Accessed April 29, 2002.
  • Pharmaprojects: Drugs in Development. Richmond, Surrey: PJB Publications Ltd. Accession No: 023380; Update: 20011019. Available from http://www.datastar-web.com/DSP/20020429_163449_f6881_26/WBDoc1/14001/157f6a21/ Accessed April 29, 2002.
  • Woodcock JM, Andrews JM, Brenwaldt NI, Ashby JP, Wise R. The in vitro activity of faropenem, a novel oral penem. J Antimicrob Chemother 1997; 39 (1): 35–43.
  • Cormican MG, Jones RN. Evaluation of the in vitro activity of faropenem (5Y5555 or 5UN5555) against respira-tory tract pathogens of beta-lactamase producing bacteria. J Antimicrob Chemother 1995; 35 (4): 535–539.
  • Dalhoff A, Nasu T, Okamoto K. Faropenem demon-strates greater target affinity, beta-lactamase stability and lower emergence of resistance compared to cephalosporins. [abstr]. 40th ICAAC, Ontario, Canada, September 17-20, 2000: 363.
  • Jones RN, Pfaller MA. Bacterial resistance: a worldwide problem. Diagn Microbiol Infect Dis 1998; 31 (2): 379–388.
  • Hawkey PM. The origins and molecular basis of antibi-otic resistance. Br Med J 1998; 317 (7159): 657–660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.