11
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Modeling the Tripartite Drug Efflux Pump Archetype: Structural and Functional Studies of the Macromolecular Constituents Reveal More Than Their Names Imply

Pages 581-592 | Published online: 18 Jul 2013

References

  • Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64 (2): 159–204.
  • Nishino K, Yamaguchi A. EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coll. J Bacteriol 2002; 184 (8): 2319–23.
  • Fralick JA. Evidence that ToIC is required for function-ing of the Mar/AcrAB efflux pump of Escherichia coll. J Bacteriol 1996; 178 (19): 5803–5.
  • Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coll. J Bacteriol 2001; 183 (19): 5639–44.
  • Lomovskaya O, Lewis K. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A 1992; 89 (19): 8938–42.
  • Nishino K, Yamaguchi A. Role of histone-like protein H-NS in multidrug resistance of Escherichia coll. J Bacteriol 2004; 186 (5): 1423–9.
  • Zgurskaya HI, Nikaido H. Multidrug resistance mecha-nisms: drug efflux across two membranes. Mol Microbiol 2000; 37 (2): 219–25.
  • Nikaido H. Antibiotic resistance caused by gram-nega-tive multidrug efflux pumps. Clin Infect Dis 1998;27 Suppl 1: S32–41.
  • Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol 2002; 184 (23): 6490–8.
  • Elkins CA, Nikaido H. Chimeric analysis of AcrA func-tion reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump. J Bacteriol 2003; 185 (18): 5349–56.
  • y, Mima T, Komori Y, Morita Y, Kuroda T, Mizushima T, et al. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother 2003; 52 (4): 572–5.
  • Murata T, Kuwagaki M, Shin T, Gotoh N, Nishino T. The substrate specificity of tripartite efflux systems of Pseudomonas aeruginosa is determined by the RND compo-nent. Biochem Biophys Res Commun 2002; 299 (2): 247–51.
  • Srikumar R, Li XZ, Poole K. Inner membrane efflux components are responsible for beta-lactam specificity of mul-tidrug efflux pumps in Pseudomonas aeruginosa. J Bacteriol 1997; 179 (24): 7875–81.
  • Gotoh N, Tsujimoto H, Nomura A, Okamoto K, Tsuda M, Nishino T. Functional replacement of OprJ by OprM in the MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa. FEMS Microbiol Lett 1998; 165 (1): 21–7.
  • Yoneyama H, Ocaktan A, Gotoh N, Nishino T, Nakae T. Subunit swapping in the Mex-extrusion pumps in Pseudomonas aeruginosa. Biochem Biophys Res Commun 1998; 244 (3): 898–902.
  • Murata T, Gotoh N, Nishino T. Characterization of outer membrane efflux proteins OpmE, OpmD and OpmB of Pseudomonas aeruginosa: molecular cloning and develop-ment of specific antisera. FEMS Microbiol Lett 2002; 217 (1): 57–63.
  • Elkins CA, Nikaido H. 3D structure of AcrB: the arche-typal multidrug efflux transporter of Escherichia coli likely captures substrates from periplasm. Drug Resist Updat 2003; 6 (1): 9–13.
  • Ma D, Cook DN, Alberti M, Pon NC, Nikaido H, Hearst JE. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coll. Mol Microbiol 1995; 16 (1): 45–55.
  • Ma D, Cook DN, Alberti M, Pon NC, Nikaido H, Hearst JE. Molecular cloning and characterization of acrA and acrE genes of Escherichia coll. J Bacteriol 1993; 175 (19): 6299–313.
  • Mazzariol A, Cornaglia G, Nikaido H. Contributions of the AmpC beta-lactamase and the AcrAB multidrug efflux sys-tem in intrinsic resistance of Escherichia coli K-12 to beta-lac-tams. Antimicrob Agents Chemother 2000; 44 (5): 1387–90.
  • Nikaido H, Basina M, Nguyen V, Rosenberg EY. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those beta-lactam antibiotics containing lipophilic side chains. J Bacteriol 1998; 180 (17): 4686–92.
  • Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996; 178 (20): 5853–9.
  • Levy SB. Active efflux, a common mechanism for bio-cide and antibiotic resistance. Symp Ser Soc Appl Microbiol 2002 (31): 65S-71S.
  • Poole K. Mechanisms of bacterial biocide and antibiotic resistance. Symp Ser Soc Appl Microbiol 2002 (31): 555-645.
  • Andersen C, Hughes C, Koronakis V. Chunnel vision. Export and efflux through bacterial channel-tunnels. EMBO Rep 2000; 1 (4): 313–8.
  • Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein ToIC central to multidrug efflux and protein export. Nature 2000; 405 (6789): 914–9.
  • Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, et al. Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem 2004; 279 (51): 52816–9.
  • Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, et al. Crystal structures explain functional properties of two E. coli porins. Nature 1992; 358 (6389): 727-33.
  • Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003; 67 (4): 593–656.
  • Andersen C, Koronakis E, Bokma E, Eswaran J, Humphreys D, Hughes C, et al. Transition to the open state of the ToIC periplasmic tunnel entrance. Proc Natl Acad Sci U S A 2002; 99 (17): 11103–8.
  • Yoshihara E, Maseda H, Saito K. The outer membrane component of the multidrug efflux pump from Pseudomonas aeruginosa may be a gated channel. Eur J Biochem 2002; 269 (19): 4738–45.
  • Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999; 1 (1): 107–25.
  • Tikhonova EB, Wang Q, Zgurskaya HI. Chimeric analy-sis of the multicomponent multidrug efflux transporters from gram-negative bacteria. J Bacteriol 2002; 184 (23): 6499–507.
  • Kim SH, Chang AB, Saier MH, Jr. Sequence similarity between multidrug resistance efflux pumps of the ABC and RND superfamilies. Microbiology 2004; 150 (Pt 8): 2493–5.
  • Saier MH, Jr., Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, et al. The major facilitator superfami-ly. J Mol Microbiol Biotechnol 1999; 1 (2): 257–79.
  • Phale PS, Philippsen A, Widmer C, Phale VP, Rosenbusch JP, Schirmer T. Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation. Biochemistry 2001; 40 (21): 6319–25.
  • Schmid B, Maveyraud L, Kromer M, Schulz GE. Porin mutants with new channel properties. Protein Sci 1998; 7 (7): 1603–11.
  • Van Gelder P, Saint N, van Boxtel R, Rosenbusch JP, Tommassen J. Pore functioning of outer membrane protein PhoE of Escherichia coli: mutagenesis of the constriction loop L3. Protein Eng 1997; 10 (6): 699–706.
  • Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002; 419 (6907): 587–93.
  • Murakami S, Yamaguchi A. Multidrug-exporting sec-ondary transporters. Curr Opin Struct Biol 2003; 13 (4): 443–52.
  • Li XZ, Ma D, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aerugi-nosa: active efflux as a contributing factor to beta-lactam resis-tance. Antimicrob Agents Chemother 1994; 38 (8): 1742–52.
  • Ecia 5, Maseda H, Nakae T. An elegant means of self-protection in gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space. J Biol Chem 2003; 278 (4): 2085–8.
  • Mao W, Warren MS, Black DS, Satou T, Murata T, Nishino T, et al. On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol Microbiol 2002; 46 (3): 889–901.
  • Yu Ew, McDermott G, Zgurskaya HI, Nikaido H, Koshland DE, Jr. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 2003; 300 (5621): 976–80.
  • Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 2003; 185 (19): 5657–64.
  • Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coll. J Bacteriol 2005; 187 (6): 1923–9.
  • Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 2000; 182 (6): 1754–6.
  • Johnson JM, Church GM. Alignment and structure pre-diction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J Mol Biol 1999; 287 (3): 695–715.
  • Zgurskaya HI, Nikaido H. AcrA is a highly asymmetric protein capable of spanning the periplasm. J Mol Biol 1999; 285 (1): 409–20.
  • Nehme D, Li XZ, Elliot R, Poole K. Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. J Bacteriol 2004; 186 (10): 2973–83.
  • Avila-Sakar AJ, Misaghi S, Wilson-Kubalek EM, Downing KH, Zgurskaya H, Nikaido H, et al. Lipid-layer crys-tallization and preliminary three-dimensional structural analysis of AcrA, the periplasmic component of a bacterial multidrug efflux pump. J Struct Biol 2001; 136 (1): 81–8.
  • Yoneyama H, Maseda H, Kamiguchi H, Nakae T. Function of the membrane fusion protein, MexA, of the MexA, B-OprM efflux pump in Pseudomonas aeruginosa without an anchoring membrane. J Biol Chem 2000; 275 (7): 4628–34.
  • Akama H, Matsuura T, Kashiwagi S, Yoneyama H, Narita S, Tsukihara T, et al. Crystal structure of the mem-brane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 2004; 279 (25): 25939–42.
  • Higgins MK, Bokma E, Koronakis E, Hughes C, Koronakis V. Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci U S A 2004; 101 (27): 9994–9.
  • Harley KT, Djordjevic GM, Tseng TT, Saier MH. Membrane-fusion protein homologues in gram-positive bacte-ria. Mol Microbiol 2000; 36 (2): 516–7.
  • Narita S, Eda S, Yoshihara E, Nakae T. Linkage of the efflux-pump expression level with substrate extrusion rate in the MexAB-OprM efflux pump of Pseudomonas aeruginosa. Biochem Biophys Res Commun 2003; 308 (4): 922–6.
  • Zgurskaya HI, Nikaido H. Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Escherichia coll. J Bacteriol 2000; 182 (15): 4264–7.
  • Tikhonova EB, Zgurskaya HI. Acr A, Acr B, and ToIC of Escherichia coli Form a Stable Intermembrane Multidrug Efflux Complex. J Biol Chem 2004; 279 (31): 32116-24. Ip H, Stratton K, Zgurskaya H, Liu J. pH-induced con-formational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system. J Biol Chem 2003; 278 (50): 50474-82.
  • Murakami S, Tamura N, Saito A, Hirata T, Yamaguchi A. Extramembrane central pore of multidrug exporter AcrB in Escherichia coli plays an important role in drug transport. J Biol Chem 2004; 279 (5): 3743–8.
  • Borges-Walmsley MI, Beauchamp J, Kelly SM, Jumel K, Candlish D, Harding SE, et al. Identification of oligomer-ization and drug-binding domains of the membrane fusion pro-tein EmrA. J Biol Chem 2003; 278 (15): 12903–12.
  • Touze T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V. Interactions underlying assembly of the Escherichia coli AcrAB-ToIC multidrug efflux system. Mol Microbiol 2004; 53 (2): 697–706.
  • Mokhonov VV, Mokhonova El, Akama H, Nakae T. Role of the membrane fusion protein in the assembly of resis-tance-nodulation-cell division multidrug efflux pump in Pseudomonas aeruginosa. Biochem Biophys Res Commun 2004; 322 (2): 483–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.