45
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Innate Immunity in Sepsis Pathogenesis and Its Modulation: New Immunomodulatory Targets Revealed

Pages 672-683 | Published online: 18 Jul 2013

References

  • Ulloa L, Tracy KJ. The `cytokine profile': a code for sep-sis. Trends Mol Med 2005; 11: 56–63.
  • Chen G, Li J, Qiang X, Czura CJ, Ochani M, Ochani K et al. Suppression of HMGB1 release by stearoyl lysophos-phatidylchine: an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res 2005; 46: 623–627.
  • Martin GS, Mannino DM, Eaton S, Moss M. The epidemi-ology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003; 348: 1546-1554.
  • Cohen J. The immunopathogenesis of sepsis. Nature 2002; 420: 885–891.
  • Netea MG, Van der Meer JWM, Deuren MV, Kullberg BJ. Proinflammatory cytokines and sepsis syndrome: not enough, or too much of good thing? Trends Immunol 2003; 24: 254-259. Abraham E, Matthay MA, Dinarello CA, Vincent JL, Cohen J, Opal SM et al. Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory dis-tress syndrome: a reevaluation. Crit Care Med 2000; 28: 232–235.
  • Matot I, Sprung CL. Definitions of sepsis. Intensive Care Med 2001; 27: 83–89.
  • Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Car-cillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome and associated costs of care. Crit Care Med 2001; 29: 1303–1310.
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recog-nition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature 2001; 413: 732–738.
  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 24: 1431-1433.
  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysac- charide responsiveness on Toll-like receptor 4. J Exp Med. 1999; 189 (11): 1777–1782.
  • Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Ki-moto M, Miyake K. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 2000; 164 (7): 3471–3475.
  • Lynn WA, Liu Y, Golenbock DT. Neither CD14 nor serum is absolutely necessary for activation of mononuclear phagocytes by bacterial lipopolysaccharide. Infect Immun 1993; 61: 4452-4461.
  • Triantafilou M, Triantafilou K, Fernandez N. Rough and smooth forms of fluorescein-labelled bacterial endotoxin exhibit CD14/LPB dependent and independent binding that is influ-enced endotoxin concentration. Eur J Biochem 2000; 267: 2218-2226.
  • Gessani S, Testa U, Varano B, Di Marzio P, Borghi P, Conti L et al. Enhanced production of LPS-induced cytokines during differentiation of human monocytes to macrophages. Role of LPS receptors. J Immunol. 1993; 151 (7): 3758–3766.
  • Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M et al. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science. 2003; 302 (5653): 2126–2130.
  • Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Gosh S. A toll-like receptor that prevents infec-tion by uropathogenic bacteria. Science 2004; 303: 1522–1526.
  • Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M et al. TLR4 mutations are associated with endotoxin hy-poresponsiveness in humans. Nat Genet 2000; 25: 187–191.
  • Lorenz E, Frees KL, Schwartz DA. Determination of the TLR4 genotype using allele-specific PCR. Biotechniques 2001; 31: 22–24.
  • Schwartz DA. TLR4 and LPS hyporesponsiveness in hu-mans. Int J Hyg Environ Health 2002; 205: 221–227.
  • O'Neill L. The Toll/interleukin-1 receptor domain: a mo-lecular switch for inflammation and host defense. Biochem Soc Trans. 2000; 28: 557–563.
  • Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirt-sos C et al. Severe impairment of interleukin-1 and Toll-like re-ceptor signaling in mice lacking IRAK-4. Nature. 2002; 416: 750–756.
  • Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E et al. Bacterial lipopolysaccharide activates nuclear fac-tor-_B through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 1999; 274: 7611–7614.
  • Lomaga MA, Ych WC, Sarosi I, Duncan GS, Furlonger C, Ho A et al. TRAF6 deficiency results in osteoporosis and defec-tive interleukin-1, CD40, and LPS signaling. Genes Dev 1999; 13: 1015–1024.
  • Lee J, Mira-Arbibe L, Ulevitch RJ. TAK1 regulates multi-ple protein kinase cascades activated by bacterial lipopolysac-charides. J Leukoc Biol 2000; 68: 909–915.
  • Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 2003; 301: 640–643.
  • Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO et al. Identification of LPS as a key transducer of MyD88-inde-pendent TIR signaling. Nature 2003; 424: 743–748.
  • Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 2003; 4: 1144–1150.
  • Werts C, Tapping Ri, Mathison JC, Chuang TH, Kravchenko V, Girons IS et al. Leptospiral lipopolysaccharide activates cells through a TLR2 dependent mechanism. Nat Im-munol 2001; 2 (4): 346-352.
  • Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hult- mark D. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 2000; 97: 13772–13777.
  • Liu C, Xu Z, Gupta D, Dziarski R. Peptidoglycan recogni-tion proteins: a novel family of four human innate immunity pat-tern recognition molecules. J Biol Chem 2001; 276: 34686–34694.
  • Bouchan A, Dietrich J, Colonna M. Cutting edge: Inflam-matory response can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 2000; 164: 4991-4995.
  • Bouchan A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of sep-tic shock. Nature 2001; 410: 1103-1107.
  • Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J et al. Nodl detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science. 2003; 300 (5625): 1584–1587.
  • Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278 (11): 8869-8872.
  • Inohara N, Ogura Y, Chen FF, Muto A, Nunez G. Human Nodl confers responsiveness to bacterial lipopolysaccharides. J Biol Chem. 2001; 276 (4): 2551–2554.
  • Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 2003; 4 (2): 95–104.
  • Chamaillard M, Hashimoto M, Hone Y, Masumoto J, Qiu S, Saab L et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003; 4 (7): 702-707.
  • Bertin J, Nir WJ, Fischer CM, Tayber OV, Errada PR, Grant JR et al. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J Biol Chem 1999; 274 (19): 12955-12958.
  • Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nodl/Apaf-1 family member that is restricted to monocytes and activates NF-kappa B. J Biol Chem 2001; 276 (7): 4812–4818.
  • Cartwright N, Murch 0, McMaster KS, Paul-Clark MJ, Heel DAV, Ryffel B et al. Selective NOD1 agonists cause shock and organ injury/dysfunction in vivo. Am J Respir Crit Care Med 2007; 175: 595–603.
  • Fritz JH, Girardin SE, Fitting C, Werts C, Mengin-Lecreulx D, Caroff M, et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol 2005; 35: 2459-2470.
  • Uehara A, Yang S, Fujimoto Y, Fukase K, Kusumoto S, Shibata K, etal. Muramyldipeptide and diaminopimelic acid-con-taining desmuramylpeptides in combination with chemically syn-thesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell Microbiol 2005; 7: 53–61.
  • Tada H, Aiba S, Shibata K, Ohteki T, Takada H. Syner-gistic effect of Nodl and Nod2 agonists with Toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect Immun 2005; 73: 7967-7976.
  • Trinchieri G, Sher A. Cooperation of Toll-like receptor sig-nals in innate immune defence. Nat Rev Immunol 2007; 7: 179–190.
  • Watanabe T, Kitani A, Murray PJ, Strober W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 2004; 5: 800–808.
  • de Boer JP, Creasey AA, Chang A, Roem D, Eerenberg AJ, Hack CE, Taylor FB Jr. Activation of the complement sys-tem in baboons challenged with live Escherichia coli: correlation with mortality and evidence for a biphasic activation pattern. In-fect Immun 1993; 61: 4293–4301.
  • Bengtson A, Heideman M. Anaphylatoxin formation in sepsis. Arch Surg 1988; 123: 645–649.
  • Nakae H, Endo S, Inada K, Takakuwa T, Kasai T, Yoshida M. Serum complement levels and severity of sepsis. Res Corn-mun Chem Pathol Pharmacol 1994; 84: 189–195.
  • Fierl MA, Schreiber H, Huber-Lang MS. The role of com-plement, C5a, and its receptors in sepsis and multiorgan dys-function syndrome. J Invest Surg 2006; 19: 255–265.
  • Muller-Eberhard HJ. Molecular organization and function of the complement system. Annu Rev Biochem1988; 57: 321–347.
  • Reid KB, Porter RR. The proteolytic activation systems of complement. Ann Rev Biochem 1981; 50: 433–464.
  • Fujita T. Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2002; 2: 346–353.
  • Zhao L, Ohtaki Y, Yamaguchi K, Matsushita M, Fujita T, Yokochi T, et al. LPS-induced platelet response and rapid shock in mice: contribution of 0 antigen region of LPS and involve-ment of the lectin pathway of the complement system. Blood 2002; 100: 3233-3239.
  • Gerard C. Complement C5a in the sepsis syndrome-Too much of a good thing? N Engl J Med 2003; 348: 167–169.
  • Ward PA. The dark side of C5a in sepsis. Nat Rev Im-munol 2004; 4: 133–142.
  • Smedegard G, Cui LX, Hugh i TE: Endotoxin-induced shock in the rat. A role for C5a. Am J Pathol 1989; 135: 489–497.
  • Bengtson A, Heideman M: Anaphylatoxin formation in sepsis. Arch Surg 1988; 123: 645–649.
  • Nakae H, Endo S, Inada K, Takakuwa T, Kasai T, Yoshida M: Serum complement levels and severity of sepsis. Res Com-mun Chem Pathol Pharmacol 1994, 84: 189–195.
  • de Boer JP, Creasey AA, Chang A, Roem D, Eerenberg AJ, Hack CE, Taylor Jr FB. Activation of the complement sys-tem in baboons challenged with live Escherichia coli: correlation with mortality and evidence for a biphasic activation pattern. In-fect Immun 1993; 61: 4293–4301.
  • Huber-Lang M, Sarma VJ, Lu KT, McGuire SR, Padgaonkar VA, Guo RF et al. Role of C5a in multiorgan failure during sepsis. J Immunol 2001; 166: 1193–1199.
  • Huber-Lang M, Younkin EM, Sarma JV, Riedemann N, McGuire SR, Lu KT et al. Generation of C5a by phagocytic cells. Am J Pathol 2002; 161: 1849–1859.
  • Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS. Oxygen radicals mediate endothelial cell damage by com-plement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest 1978; 61: 1161–1167.
  • Shin HS, Snyderman R, Friedman E, Mellors A, Mayer MM. Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement. Science 1968; 162: 361–363.
  • Goldstein IM, Weissmann G. Generation of C5-derived lysosomal enzyme-releasing activity (C5a) by lysates of leukocyte lysosomes. J Immunol 1974; 113: 1583-1588.
  • Ward PA. Role of the complement in experimental sepsis. J Leukoc Biol 2008; 83: 1–4.
  • Hoesel LM, Niederbichler AD, Ward PA. Complement-related molecular events in sepsis leading to heart failure. Mol Immunol 2007; 44: 95–102.
  • Chen NJ et al. C5L2 is critical for the biological activities of the anaphlatoxins C5a and C3a. Nature 2007; 446; 203–207.
  • Rittrisch D, Flierl MA, Nadeau BA, Day DE, Huber-Lang M, Mackay CR et al. Functional role for C5a receptors in sepsis. Nat Med 2008;
  • Schumacher WA, Fantone JC, Kunkel SE, Webb RC, Luc-chesi BR. The anaphylatoxins C3a and C5a are vasodilators in the canine coronary vasculature in vitro and in vivo. Agents Ac-tions 1991; 34: 345–349.
  • Strieter RM, Kasahara K, Allen RM, Standiford TJ, Rolfe MW, Becker FS, et al. Cytokine induced neutrophil-derived in-terleukin-8. Am J Pathol 1992; 141: 397–407.
  • Hopken U, Mohr M, Struber A, Montz H, Burchardi H, Gotze 0, et al. Inhibition of interleukin-6 synthesis in an animal model of septic shock by anti-05a monoclonal antibodies. Eur J Immunol 1996; 26: 1103-1109.
  • Guo RF, Riedeman NC, Ward PA. Role of C5a-05aR in-teraction in sepsis. Shock 2004; 21 (1): 1–7.
  • Ikeda K, Nagasawa K, Horiuchi T, Tsuru T, Nishizaka H, Niho Y. C5a induces tissue factor activity on endothelial cells. Thromb Haemost 997; 77: 394-398.
  • Muhlfelder TW, Niemetz J, Kreutzer D, Beebe D, Ward PA, Rosenfeld SI. C5 chemotactic fragment induces leukocyte production of tissue factor activity: a link between complement and coagulation. J Clin Invest 1979; 63: 147–150.
  • Carson SD, Johnson DR. Consecutive enzyme cascades: complement activation at the cell surface triggers increased tissue factor activity. Blood 1990; 76: 361–367.
  • Laudes IJ, Chu JC, Sikranth S, Huber-Lang M, Guo RF, Riedemann N, et al. Anti-c5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis. Am J Pathol 2002; 160: 1867-1875.
  • Guo RF, Ward PA. C5a, a therapeutic target in sepsis. Rec Pat Anti-infect Drug Discov 2006; 1
  • Van der Poll T, Lowry SF. Tumor necrosis factor in sep-sis: mediator of multiple organ failure or essential part of host defense? Shock 1995; 3: 1–12.
  • Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348: 138–150.
  • Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 1994; 45: 491–503.
  • Tracey KJ, Cerami A. Tumor necrosis factor, other cy-tokines and disease. Annu Rev Cell Biol 1993; 9: 317–343.
  • Matsuda N, Hattori Y. Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci 2006; 101: 189–198.
  • Wang H, Bloom 0, Zhang M, Vishnubhakat MJ, Om-brellino M, Che J et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285 (5425): 248-251.
  • Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE et al. Reversing established sepsis with antagonists of endoge-nous high-mobility group box 1. Proc. Natl. Acad. Sci. USA 2001; 101: 296–301.
  • Czura CJ, Yang H, Tracey KJ. High mobility group box-1 as a therapeutic target downstream of tumor necrosis factor. J Infect Dis 2003; 187 Suppl 2: S391–S396.
  • Ombrellino M, Wang H, Ajemian MS, Talhouk A, Scher LA, Friedman SG, Tracey KJ. Increased serum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet 1999; 354 (9188): 1446–1447.
  • Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418: 191–195.
  • Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory path-way EMBO Rep. 2002; 3 (10): 995–1001.
  • Rendon-Mitchell B, Ochani M, Li J, Han J, Wang H, Yang H. IFN-? Induces High Mobility Group Box 1 Protein Release partly through a TNF-dependent mechanism J Immunol 2003; 170: 3890-3897.
  • Erlandsson HH, Andersson U. Mini-review: The nuclear protein HMGBI as proinflammatory mediator. Eur J Immunol 2004; 34: 1503–1512.
  • Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T et al. The pattern recognition receptor (RAGE) is a counter receptor for leukocyte integrins: a novel pathway for inflamma-tory cell recruitment. J Exp Med 2003; 198 (10): 1507–15.
  • Liliensiek B, Weigand MA, Bierhaus A, Nicklas W, Kasper M, Hofer S et al. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest. 2004; 113 (11): 1641–1650.
  • Bozza M, Satoskar AR, Lin G, Lu B, Humbles AA, Ger-ard C, et al. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med 1999; 189 (2): 341–346.
  • Calandra T, Spiegel LA, Metz CN, Bucala R. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of Gram-positive bacteria. Proc Nail Acad Sci USA 1998; 95: 11383–11388.
  • Lefering R, Neugebauer EA. Steroid controversy in sepsis and septic shock: a meta-analysis. Crit Care Med. 1995; 23: 1294–1303.
  • Cohen J. Adjunctive therapy in sepsis: a critical analysis of the clinical trial programme. Br Med Bull 1999; 55: 212–225.
  • Reinhart K, Karzai W. Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit Care Med. 2001; 29: S121–S125.
  • Oh1sson K, Bjork P, Bergenfeldt M, Hageman R, Thompson RC. Interleulin-lreceptor antagonist reduces mortality from endotoxin shock. Nature 1990; 348: 550-552.
  • Opal SM, Fisher CJ Jr, Dhainaut JF, Vincent JL, Brase R, Lowry SF et al. Confirmatory interleukin-1 receptor antago-nist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit Care Med 1997 1; 25 (7): 1115-1124.
  • Vincent JL, Sun Q, Dubois MJ. Clinical trials of im-munomodulatory therapies in sepsis and septic shock. Clin In-fect Dis 2001; 34: 1084–1093.
  • Reidmann NC, Guo RF, Ward PA. Novel strategies for the treatment of sepsis. Nat Med 2003; 9: 517–524.
  • Hancock REW, Sahl HG. Antimicrobial and host defense peptides as new anti-infective therapeutic strategies. Nat Biotech-nol 2006; 24: 1551–1557.
  • Gough M, Hancock RE, Kelly NM. Antiendotoxin activ-ity of cationic peptide antimicrobial agents Infect Immun 1996; 64: 4922-4927.
  • Marra MN, Wilde CG, Griffith JE, Snable JL, Scott RW. Bactericidal/permeability-increasing protein has endotoxin neu-tralizing activity. J Immunol 1990; 144: 662–666.
  • Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, et al. Cathelicidin Family of Antibacterial peptides CAP18 and CAP11 inhibits thq_expression of TNF-_ by blocking the binding of LPS to CD14 cells. J Immunol 2001; 167: 3329-3338.
  • Weiss J, Muello K, Victor M, Elsbach P. The role of lipopolysaccharides in the action of the bactericidal/permeability increasing neutrophil protein on the bacterial envelope. J Im-munol 1984; 132: 3109–3115.
  • Marra MN, Wilde CG, Griffith JE, Snable JL, Scott RW. Bactericidal/permeability-increasing protein has endotoxin-neu-tralizing activity. J Immunol 1990; 144: 662–666.
  • Jiang J, Zhu P, Wang Z, He Y, Liu D, Tian K, et al. Pro-tective effect of bactericidal/permeability-increasing protein in mice with E. coli sepsis. Chin J Traumatol 1998; 1 (1): 21–24.
  • Jiang J, Xie G, Liu D, Zhu P, Wang Z, He Yet al. Effect of bactericidal/permeability-increasing protein on sepsis induced by intra-abdominal infection in rats. Chin J Traumatol 1999; 2 (2): 84–86.
  • Bowdish DME, Hancock REW. Anti-endotoxin proper-ties of cationic host defense peptides and proteins. J Endo Res 2005; 11 (4): 230–236.
  • Levin M, Quint PA, Goldstein B, Barton P, Bradley JS, Shemie SD et al. Recombinant bactericidal/permeability-in-creasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomized trial. rBPI21 Meningococcal Sepsis Study Group. Lancet. 2000; 356 (9234): 961-967.
  • Lynn M, Rossignol DP, Wheeler JL, Kao RJ, Perdomo CA, Noveck R et al. Blocking of responses to endotoxin by E5564 in healthy volunteers with experimental endotoxemia. J Infect Dis 2003; 187 (4): 631-9.
  • Savov JD, Brass DM, Lawson BL, McElvania-Tekippe E, Walker JK, Schwartz DA. Toll-like receptor 4 antagonist (E5564) prevents the chronic airway response to inhaled lipopolysaccha-ride. Am J Physiol Lung Cell Mol Physiol 2005; 289 (2): L329–L337.
  • Cristofaro P, Opal SM. Role of Toll-like receptors in in-fection and immunity. Drugs 2006; 66 (1): 15–29.
  • Ii M, Matsunaga N, Hazeki K, Nakamura K, Takashima K, Tsukasa S. A Novel cyclohexene derivative, ethyl (60-6-1n-(2-chloro-4-fluorophenyl)sulfamoylIcyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits Toll-Like receptor 4-mediated cy-tokine production through suppression of intracellular signaling. Mol Pharmacol 2006; 69: 1288-1295.
  • Methe H, Kim JO, Kofler S, Nabauer M, Weis M. Statins decrease Toll-like receptor 4 expression and downstream signal-ing in human CD14+ monocytes. Arterioscler Thromb Vasc Biol 2005; 25 (7): 1439–45.
  • Pahan K, Sheikh FG, Namboodiri AM, Singh D. Lovas-tatin and phenylacetate inhibit the induction of nitric oxide syn-thase and cytokines in rat primary astrocytes, microglial cells and macrophages. J Clin Invest 1997; 100: 2671–1679.
  • Greenwood J, Steinman L, Zamvil SC. Statin therapy and autoimmune disease: from protein prenylation to immunomod-ulation. Nat Rev Immunol 2006; 6: 358–370.
  • Li SF, Ye X, Malik AB. Inhibition of NF-_B activation by pyrrolidine dithiocarbamate prevents in vivo expression of proin-flammatory genes. Circulation 1999; 100: 1330–1337.
  • Demarchi F, Bertoli C, Sandy P, Schneider C. Glycogen synthase kinase-3 beta regulates NF-kappa B1/p105 stability. J Biol Chem 2003; 278 (41): 39583–90.
  • Takada Y, Fang X, Jamaluddin MS, Boyd DD, Aggarwal BB. Genetic deletion of glycogen synthase kinase-3beta abro-gates activation of ikappabalpha kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by tumor necrosis fac-tor. J Biol Chem 2004; 279 (38): 39541–39554.
  • Dugo L, Collin M, Allen DA, Patel NS, Bauer I, Mervaala EM et al. GSK-3beta inhibitors attenuate the organ injury/dys-function caused by endotoxemia in the rat. Crit Care Med. 2005; 33 (9): 1903-1912.
  • Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA 2002; 99: 12351–12356.
  • Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 2004; 10: 1216–1221.
  • Yan JJ, Jung JS, Lee JE, Lee J, Huh SO, Kim HS et al. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med 2004; 10: 161–167.
  • Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hultner L et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med 2000; 6 (2): 164–70.
  • Roger T, David J, Glauser MP, Calandra T. MIF regulates innate immune response through modulation of Toll-like recep-tor 4. Nature 2001; 414: 920–924.
  • Lomas-Neira J, Ayala A. Pepducins: an effective means to inhibit GPCR signaling by neutrophils. Trends Immunol. 2005; 26 (12): 619–621.
  • Brown KA,Brain SD, Pearson JD, Edgeworth JD, Lewis SM, Treacher SF. Neutrophils in development of multiorgan fail-ure in sepsis. Lancet 2006; 368: 157–169.
  • Reutershan J, Morris MA, Burcin TL, Smith DF, Chang D, Saprito MS, Ley K. Critical role of endothelial CXCR2 in LPS induced neutrophil migration into the lung. J Clin Invest 2006; 116: 695–702.
  • Kaneider NC, Agarwal A, Leger AJ, Kuliopulos A. Re-versing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat Med 2005; 11: 661–665.
  • Abraham, E. Laterre PF, Garbino J, Pingleton S, Butler T, Dugernier T et al. Lenercept (p55 tumor necrosis factor re-ceptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients. Crit Care Med 2001; 29: 503–510.
  • Fisher CJ Jr, Dhainaut JFA, Opal SM, Pribble JP, Slot-man GJ et al. Recombinant human interleukin lreceptor antag-onist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. J Am Med Assoc 1994; 271: 1836–1843.
  • Hornef MW, Normark BH, Vandewalle A, Normark S. Intracellular recognition of lipopolysaccharide by toll-like recep-tor 4 in intestinal epithelial cells. J Exp Med. 2003; 198: 1225-1235.
  • McCurdy JD, Olynych TJ, Maher LH, Marshall JS. Cut-ting edge: distinct toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J Immunol 2003; 170: 1625-1629.
  • Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY. TLR2 is expressed on activated T cells as costimulatory receptor. Proc. Natl Acad Sci USA 2004; 101: 3029–3034.
  • Wright SD, Jong MT. Adhesion promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J Exp Med. 1986; 164: 1876–1888.
  • Heine H, Lentschat A, Hamann L. Decay-accelerating factor (DAF/CD55) is a functional active element of the LPS re-ceptor complex. J Endotoxin Res. 2001; 7: 227–231.
  • Nathan C, Ding A. TREM-1: a new regulator of innate immune system in sepsis syndrome. Nat Med 2001; 7: 530–532.
  • Ogata H, Su I, Miyake K, Nagai Y, Akashi S, Mecklen-bräuker I, et al. The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med 2000; 192; 23–29.
  • Triantafilou K, Triantafilou M, Dedrick RL. A CD14-in-dependent LPS receptor cluster. Nat Immunol. 2001; 2: 338–345.
  • Giardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, et al. Nodl detects a unique muropeptide from gram negative bacterial peptidoglycan. Science 2003; 300: 1584–1587.
  • Giardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278: 8869-8872.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.