57
Views
24
CrossRef citations to date
0
Altmetric
Antimicrobial Chemotherapy

Azithromycin Reduces Tumor Necrosis Factor-Alpha Production in Lipopolysaccharide-Stimulated THP-1 Monocytic Cells by Modification of Stress Response and p38 MAPK Pathway

Pages 396-402 | Published online: 18 Jul 2013

REFERENCES

  • Beutler B, Krochin N, Milsark LW, Luedke C, Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mecha-nisms of endotoxin resistance. Science 1986; 232 (4753): 977–80.
  • Abraham E, Anzueto A, Gutierrez G, Tessler S, San Pedro G, Wunderink R, et al. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treat-ment of septic shock. NORASEPT II Study Group. Lancet. 1998; 351 (9107): 929–33.
  • Cohen J, Abraham E. Microbiologic findings and correla-tions with serum tumor necrosis factor-alpha in patients with se-vere sepsis and septic shock. J Infect Dis. 1999; 180 (1): 116–21.
  • American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992; 20 (6): 864-74.
  • LaDuca JR, Gaspari AA. Targeting tumor necrosis factor alpha. New drugs used to modulate inflammatory diseases. Der-matol Clin. 2001; 19 (4): 617–35.
  • Krueger G, Callis K. Potential of tumor necrosis factor in-hibitors in psoriasis and psoriatic arthritis. Arch Dermatol. 2004; 140 (2): 218–25.
  • Roche Y, Gougerot-Pocidalo MA, Fay M, Forest N, Poci-dalo JJ. Macrolide and immunity: effects of erythromycin and spiramycin on human mononuclear cell proliferation. J. Antimi-crob. Chemother. 1986; 17: 195–203.
  • Anderson R. Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J In-fect Dis 1989; 159: 966–973.
  • Van Vlem B, Vanholder R, De Paepe P, Vogelaers D, Ringoir S. Immunomodulating effect of antibiotics: literature review. Infection 1996; 24: 275–291.
  • Stevens DL. Immune modulatory effects of antibiotics. Curr Opin Infect Dis. 1996; 9: 165–9.
  • Morikawa K, Watabe H, Araake M, Morikawa S. Modu-latory effect of antibiotics on cytokine production by human monocytes in vitro. Antimicrob Agents Chemother. 1996;40 (6): 1366–70.
  • Korzeniowski OM. Effects of antibiotics on the mam-malian immune system. Infect Dis Clin North Am. 1989; 3: 469–78.
  • Grip O, Janciauskiene S, Lindgren S. Pravastatin down-regulates inflammatory mediators in human monocytes in vitro. Eur J Pharmacol. 2000; 20; 410 (1): 83-92.
  • Williams JD. Spectrum of activity of azithromycin. Eur J Clin Micrb Infect Dis 1991; 10; 813–20
  • Gladue RP, Bright GM, Isaacson RE, Newborg MF. In vitro and in vivo uptake of azithromycin by phagocytic cells: possible mechanism of delivery and release at sites of infection. An-timicrob. Agents Chemother. 1989; 33 (3): 277–282.
  • Schentag JJ, Ballow CH. Tissue-directed pharmacokinet-ics. Am J Med 1991; 91 (suppl.3A): 3A55-3A115.
  • McDonald PJ, Pruul H. Phagocyte uptake and transport of azithromycin. Eur J Clin Microbiol Infect Dis. 1991; 10 (10): 828–33.
  • Wildfeuer A, Laufen H, Zimmermann T. Distribution of orally administered azithromycin in various blood compartments. Int J Clin Pharmacol Ther. 1994; 32 (7): 356–60.
  • Retsema JA, Bergeron JM, Girard D, Milisen WB, Girard AE. Preferential concentration of azithromycin in an infected mouse thigh model. J Antimicrob Chemother 1993; 31 Suppl E: 5-16.
  • Khan AA, Slifer TR, Araujo FG, Remington JS. Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int J Antimicrob Agents. 1999; 11 (2): 121–32.
  • Yokota S, Kitahara M, Nagata K. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermo-tolerance and heat shock protein induction in human colon car-cinoma cells. Cancer Res. 2000; 60 (11): 2942–8.
  • Inai K, Tsutani H, Yamauchi T, Fukushima T, Iwasaki H, Imamura S, et al. Differentiation induction in non-lymphocytic leukemia cells upon treatment with mycophenolate mofetil. Leuk Res. 2000; 24 (9): 761–8.
  • Inai K, Tsutani H, Yamauchi T, Huberman E, Nakamura T, Ueda T. Differentiation induction in non-lymphocytic leukemia cells upon treatment with mizoribine. Int J Hematol. 1997; 66 (3): 335–44.
  • Wang JH, Doyle M, Manning BJ, Di Wu Q, Blankson S, Redmond HP. Induction of bacterial lipoprotein tolerance is associated with suppression of toll-like receptor 2 expression. J Biol Chem. 2002; 277 (39): 36068–75.
  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, et al. HSP-70 stimulates cytokine production through a CD 14-dependent pathway, demonstrating its dual role as a shaperone and cytokine. Nature Med, 2000; 6, 4: 435442.
  • Vega VL, De Maio A. Geldanamycin treatment amelio-rates the response to LPS in murine macrophages by decreasing CD14 surface expression. Mol Biol Cell 2003; 14 (2): 764–73.
  • Briant D, Ohan N, Heikkila JJ. Effect of herbimycin A on hsp30 and hsp70 heat shock protein gene expression in Xeno-pus cultured cells. Biochem Cell Biol. 1997; 75 (6): 777–82.
  • Housby JN, Cahill CM, Chu B, Prevelige R, Bickford K, Stevenson MA, et al. Non-steroidal anti-inflammatory drugs in-hibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine. 1999; 11 (5): 347–58.
  • Tsan MF, Gao B. Cytokine function of heat shock proteins. Am J Physiol Cell Physiol. 2004; 286 (4): C739–44.
  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding proteins. Science. 1990; 249 (4975): 1431–3.
  • Wright SD. CD14 and innate recognition of bacteria. J Immunol 1995; 155 (1): 6–8.
  • Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Ki-moto M, et al. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol. 2000; 164 (7): 3471–5.
  • Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Mat-sumoto M, et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of sur-face toll-like receptor 4 expression. J Immunol. 2000; 164 (7): 3476–9.
  • Manthey CL, Wang SW, Kinney SD, Yao Z. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J Leukoc Biol 1998; 64 (3): 409–17.
  • Rutault K, Hazzalin CA, Mahadevan LC. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective desta-bilization of TNF-alpha transcripts. J Biol Chem 2001; 276, 9: 6666–6674.
  • Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet 1988; 22, 631–77.
  • Tracey KJ. Tumor necrosis factor (cachectin) in the biol-ogy of septic shock syndrome. Circ Shock 1991; 35 (2): 123–8.
  • Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994; 45: 491–503.
  • Beutler B, Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem. 1988; 57: 505–18.
  • Bauss F, Droge W, Mannel DN. Tumor necrosis factor mediates endotoxic effects in mice. Infect Immun. 1987; Jul 55 (7): 1622-5.
  • Remick DG, Kunkel RG, Larrick JW, Kunkel SL. Acute in vivo effects of human recombinant tumor necrosis factor. Lab In-vest. 1987; 56 (6): 583–90.
  • Benveniste EN. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol. 1992; 263 (1 Pt 1): C1-16.
  • Kudoh S, Azuma A, Yamamoto M, lzumi T, Ando M. Im-provement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med. 1998; 157(6 Pt 1): 1829-32.
  • Schoni MH. Macrolide antibiotic therapy in patients with cystic fibrosis. Swiss Med Wkly. 2003; 133(21-22):297–301.
  • Wolter JM, Seeney SL, McCormack JG. Macrolides in cystic fibrosis: is there a role? Am J Respir Med. 2002; 1 (4): 235–41.
  • Cigana C, Assael BM, Meloth P. Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis air-way epithelial cells. Antimicrob Agents Chemother. 2007; 51 (3): 975–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.