89
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

The effect of thermal ageing and mechanical exposure on low cycle creep-fatigue strength of 316 steel at 625°C

&
Pages 87-97 | Published online: 02 Jan 2014

REFERENCES

  • Horton, C. A. P., Lai, J. K. L. and Skelton, R. P. Some observations on the relationship between microstructures, fatigue and creep behav-iours in a type 316 stainless steel. In: Mechanical Properties of Structural Materials including Environmental Effects. IAEA Report IWGFR-49, Vol 1, pp. 411-433 (1983).
  • Weiss, B. and Stickler, R. Phase instabilities during high temperature exposure of 316 austenitic steel. Metall. Trans. , 3, 851–866, (1972).
  • Horton, C. A. P., Marshall, P. and Thomas, R. G. Time-dependent changes in microstructures and mechanical properties of type 316 steel and weld metal. In: Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, pp. 66-72. The Metals Society, London (1982).
  • Lai, J. K. L. and Wickens, A. Microstructural changes and variations in creep ductility of three casts of type 316 stainless steel. Acta Metall. , 27, 217–230 (1979).
  • Pineau, A. High temperature fatigue behaviour of engineering materials in relation to microstructure. In: Skelton, R. P. (ed.) Fatigue at High Temperature, pp. 305–364, Applied Science Publishers, London (1983).
  • Challenger, K. D. and Moteff, J. Quantitative characterisation of the substructure of AISI stainless steel resulting from creep. Metall. Trans. , 4, 749–755, (1973).
  • Cheng, C. F., Cheng, C. Y., Diercks, D. R. and Weekes, R. W. Low-cycle fatigue behaviour of types 304 and 316 stainless steel at LMFBR operating temperatures. In: Fatigue at Elevated Temperatures, STP 520, pp. 355-364. ASTM, Philadelphia (1973).
  • Rezgui, B., Petrequin, P. and Mottot, M. Hold time effects on low cycle fatigue properties of 316L stainless steel at 600°C and 650°C. In: Advances in Fracture Research (ed. D. Francois), Vol. 5, pp. 2393–2402. Pergamon, London (1981).
  • Rezgui, B. Interaction fatigue-fluage-environnement dans un acier inoxydable austenitique Z2 CND 17-13 (Type 316L) a 600 et 650°C: Evolution microstructurale et endommagement. PhD Thesis, Universite de Paris-Sud, CentreD'Orsay (1982).
  • Wood, D. S., Wynn, J., Baldwin, A. B. and O'Riordan, P. Some creep/fatigue properties of type 316 steel at 625°C. Fatigue Eng. Mater. Struct. , 3, 39–57 (1980).
  • Skelton, R. P. Effect of microstructure and tensile dwell on growth of short fatigue cracks in 316 steel at 625°C. In: Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, pp. 129-135. The Metals Society, London (1982).
  • Challenger, K. and Moteff, J. Characterisation of the deformation substructure of AISI stainless steel after high strain fatigue at elevated temperatures. Metall. Trans. , 3, 1675–1678 (1972).
  • Skelton, R. P. Cyclic stress-strain properties during high strain fatigue. In: High Temperature Fatigue: Properties and Prediction (ed. R. P. Skelton), pp. 27–112. Elsevier Applied Science, London (1987).
  • Ermi, A. M. and Moteff, J. Correlation of substructure with time-dependent fatigue properties of AISI 304 stainless steel. Metall. Trans. , 13A, 1577–1588 (1982).
  • Etienne, C. F., Dortland, W. and Zeedijk, H. B. On the capability of austenitic steel to withstand cyclic deformations during service at elevated temperatures. In: Int. Conf. Creep and Fatigue in Elevated Temperature Applications, Paper C225/73, pp. 225.1–225.9. Inst. Mech. Engrs., London (1974).
  • Nahm, H., Moteff, J. and Diercks, D. R. Substructural development during low cycle fatigue of AISI 304 stainless steel at 649°C. Acta Metall. , 25, 107–116 (1977).
  • Weiss, J. and Pineau, A. Fatigue and creep damage of austenitic stainless steels under multiaxial loading. Metall Trans. , 24A, 2247–2261 (1993).
  • de los Rios, E. R. and Brown, M. W. Cyclic strain hardening of 316 stainless steel at elevated temperatures. Fatigue Eng. Mater. Struct. , 4, 377–388 (1981).
  • Morris, D. G. and Harries, D. R. Creep and rupture in type 316 stainless steel at temperatures between 525 and 900°C, Part III: Precipitation behaviour. Metal Sci. , 12, 542–549 (1978).
  • Morris, D. G. and Harries, D. R. Massive particle formation in a type 316 stainless steel during creep. Metal Sci. , 11, 257–260 (1977).
  • Lai, J. K. L. and Horton, C. A. P. some effects of thermal ageing and grain size on the creep behaviour of a cast of type 316 stainless steel. Mater. Sci. Eng. , 54, 285–289 (1982).
  • Wei, K. and Dyson, B. F. Creep-fatigue interactions in 316 stainless steel under torsional loading. In: Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, pp. 136-140. The Metals Society, London (1982).
  • Goodman, A. M. Design related aspects of creep and fatigue. In: Creep and Fatigue in High Temperature Alloys (ed. J. Bressers), pp. 145–186. Applied Science Publishers, London (1981).
  • Kaneko, H., Sakon, T., Kaguchi, H., Nakazawa, T., Fujita, N. and Ueda, H. Study on fracture mechanism and a life estimation method for low cycle creep-fatigue fracture of type 316 stainless steels. In: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials-3 (ed. K.-T. Rie), pp. 229–234. Elsevier Applied Science, London (1992).
  • Skelton, R. P. Crack growth with dwell in 316 and 9Cr 1Mo steels at high temperature. In: Time and Load-dependent Degradation of Pressure Boundary Materials, IAEA Report IWG-RRPC-79/2, pp. 73-87 (1978).
  • Skelton, R. P. Energy criterion for high temperature low cycle fatigue failure. Mater. Sci. Technol. , 7,427–439 (1991).
  • Skelton, R. P. Crack initiation and growth in simple metal components during thermal cycling. In: Skelton, R. P. (ed.) Fatigue at High Temperature, pp. 1–62. Applied Science Publishers, London (1983).
  • Lai, J. K. L. and Meshkat, M. Kinetics of precipitation of x-phase and M23C6 carbide in a cast of type 316 stainless steel. Metal Sci. , 12, 415–420 (1978).
  • Lai, J. K. L. and Galbraith, I. F. Quantitative analysis of carbide and intermetallic phases in type 316 steel by X-ray diffraction. J. Mater. Sci. , 15, 1297–1305 (1980).
  • Skelton, R. P. Cyclic hardening, softening and crack growth during high temperature fatigue. Mater. Sci. Technol., 9, 1001–1008 (1991).
  • Skelton, R. P. and Loveday, M. S. A re-interpretation of the BCR/VAMAS low cycle fatigue intercomparison programme using an energy criterion. Mater. High Temp. , 14, 53–68 (1997).
  • Ohashi, Y., Kawai, M. and Momose, T. Effects of prior plasticity on subsequent creep of type 316 stainless steel at elevated temperature. J. Eng. Mater. TechnoL (Trans. ASME), 108, 68–74 (1986).
  • Kikuchi, S. and Ilschner, B. Effects of a small prestrain at high tem-peratures on the creep behaviour of AISI 304 stainless steel. Scripta Metall. , 20, 159–162 (1986).
  • Monkman, F. C. and Grant, N. J. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. Am. Soc. Testing Materials, 56, 593–620 (1956).
  • Bernard, L., Campo, E. and Quaranta, S. Creep behaviour of AISI 304 and 316 stainless steels and influence of cold working. In: Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, pp. 88–93. The Metals Society, London (1982).
  • Ellison, E. G. and Paterson, A. J. F. Creep fatigue interactions in a 1CrMoV steel. Paper 12/76, Proc. Inst. Mech Engrs. , 190, 321–350 (1976).
  • Plumbridge, W. J. and Miller, K. J. Influence of prior fatigue deformation on creep behaviour. In: Creep Strength in Steel and High Temperature Alloys, pp. 50-53. The Metals Society, London (1974).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.