1,321
Views
110
CrossRef citations to date
0
Altmetric
Brief Reviews

Neuroprotective properties of GLP-1: theoretical and practical applications

, &
Pages 547-558 | Accepted 16 Dec 2010, Published online: 12 Jan 2011

References

  • Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 2004;287:E199-206
  • Komatsu R, Matsuyama T, Namba M, et al. Glucagonostatic and insulinotropic action of glucagon-like peptide I-(7-36)-amide. Diabetes 1989;38:902-5
  • Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 1988;123:2009-13
  • Jin SL, Han VK, Simmons JG, et al. Distribution of glucagon-like peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study. J Comp Neurol 1988;271:519-32
  • Yamamoto H, Lee CE, Marcus JN, et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 2002;110:43-52
  • Knauf C, Cani PD, Kim DH, et al. Role of central nervous system glucagon-like peptide-1 receptors in enteric glucose sensing. Diabetes 2008;57:2603-12
  • Larsen PJ, Tang-Christensen M, Holst JJ, et al. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 1997;77:257-70
  • Zueco JA, Esquifino AI, Chowen JA, et al. Coexpression of glucagon-like peptide-1 (GLP-1) receptor, vasopressin, and oxytocin mRNAs in neurons of the rat hypothalamic supraoptic and paraventricular nuclei: effect of GLP-1(7-36) amide on vasopressin and oxytocin release. J Neurochem 1999;72:10-6
  • Tang-Christensen M, Larsen PJ, Göke R, et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol 1996;271:R848-56
  • McMahon LR, Wellman PJ. PVN infusion of GLP-1-(7-36) amide suppresses feeding but does not induce aversion or alter locomotion in rats. Am J Physiol 1998;274:R23-9
  • Turton MD, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996;379:69-72
  • Knauf C, Cani PD, Perrin C, et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 2005;115:3554-63
  • Flint A, Raben A, Astrup A, et al. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998;101:515-20
  • Cabou C, Campistron G, Marsollier N, et al. Brain glucagon-like peptide-1 regulates arterial blood flow, heart rate, and insulin sensitivity. Diabetes 2008;57:2577-87
  • Burcelin R, Serino M, Cabou C. A role for the gut-to-brain GLP-1-dependent axis in the control of metabolism. Curr Opin Pharmacol 2009;9:744-52
  • Orskov C, Poulsen SS, Moller M, et al. Glucagon-like peptide 1 receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes 1996;45:832-5
  • Bucinskaite V, Tolessa T, Pedersen J, et al. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol Motil 2009;21:978-e78
  • Williams DL. Minireview: finding the sweet spot: peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis. Endocrinology 2009;150:2997-3001
  • Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci USA 1992;89:8641-5
  • Perry TA, Weerasuriya A, Mouton PR, et al. Pyridoxine-induced toxicity in rats: a stereological quantification of the sensory neuropathy. Exp Neurol 2004;190:133-44
  • Green B, Gault V Flatt P, et al. Comparative effects of GLP-1 and GIP on cAMP production, insulin secretion, and in vivo antidiabetic actions following substitution of Ala8/Ala2 with 2-aminobutyric acid. Arch Biochem Biophys 2004;428:136-43
  • Vilsbøll T, Agersø H, Krarup T, et al. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 2003;88:220-4
  • Ban K, Noyan-Ashraf MH, Hoefer J, et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008;117:2340-50
  • Ban K, Kim KH, Cho CK, et al. Glucagon-like peptide (GLP)-1 (9-36) amide-mediated cytoprotection is blocked by exendin (9-39) yet does not require the known GLP-1 receptor. Endocrinology 2010;151:1520-31
  • Perry TA, Greig N. A new Alzheimer’s disease interventive strategy: GLP-1. Current Drug Targets 2004;5:565-71
  • Perry TA, Haughey N, Mattison M, et al. Protection and reversal of excitotxic neuronal damage by glucagon-like peptide-1 and exendin 4. J Pharmacol Exp Ther 2002;302:881-8
  • Navarro M, de Fonseca R, Alvarez E, et al. Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT-2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonists as an inhibitory signal for food and water intake. J Neurochem 1996;67:1982-91
  • Göke R, Larsen PJ, Mikkelsen JD, et al. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 1995;7:2294-300
  • Körner M, Stöckli M, Waser B, et al. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 2007;48:736-43
  • Christ E, Wild D, Forrer F, et al. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab 2009;94:4398-405
  • Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation and apoptosis. Molecular Endocrinology 2003;17:161-71
  • Stoffers DA, Kieffer TJ, Hussain MA, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000;49:741-8
  • During M, Cao L, Zuzga D, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nature Medicine 2003;9:1173-9
  • Perry TA, Lahiri D, Sambamurti K, et al. Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J Neurosci Res 2003;72:603-12
  • McClean PL, Gault VA, Harriott P, et al. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer's disease. Eur J Pharmacol 2010;630:158-62
  • McClean PL, Abbas T, Faivre E, et al. Impairment of synaptic plasticity and learning in GLP-1 receptor knockout mice: interaction between type 2 diabetes and Alzheimer’s Disease. Diabetologia 2009;52(Suppl 1):S109 (abstract 252)
  • Young D, Lawlor PA, Leone P, et al. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 1999;5:448-53
  • Gozes I. Neuroprotective peptide drug delivery and development: potential new therapeutics. Trends Neurosci 2001;24:700-5
  • European Medicines Agency Scientific Discussion of exenatide. London, UK: European Medicines Agency, 2006. Available at: http://www.ema.europa.eu/humandocs/PDFs/EPAR/byetta/H-698-en6.pdf [Last accessed 8 July 2010]
  • Parkes D, Jodka C, Smith P, et al. Pharmacokinetic actions of exendin-4 in the rat: comparison with glucagon-like peptide-1. Drug Dev Res 2001;54:260-7
  • Byetta® prescribing information. Indianapolis, IN: Eli Lilly and Company, 2009. Available at: http://pi.lilly.com/us/byetta-pi.pdf [Last accessed 8 July 2010]
  • Kastin AJ, Akerstrom V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes Relat Metab Disord 2003;27:313-18
  • Sonne DP, Engstrøm T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 2008;146:243-9
  • Elbrønd B, Jakobsen G, Larsen S, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care 2002;25:1398-404
  • Victoza® Prescribing information. Bagsvaerd, Denmark: Novo Nordisk A/S, 2010. Available at: http://www.victoza.com/pdf/PI_(1_Column_Format).pdf [Last accessed 8 July 2010]
  • Gonzalez C, Beruto V, Keller G, et al. Investigational treatments for type 2 diabetes mellitus: exenatide and liraglutide. Expert Opin Invest Drugs 2006;15:887-95
  • Blonde L. Current antihyperglycemic treatment strategies for patients with type 2 diabetes mellitus. Cleve Clin J Med. 2009;76(Suppl 5):S4-11
  • Madsbad S. Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)-preclinical and clinical results. Best Pract Res Clin Endocrinol Metab 2009;23:463-77
  • Orskov C, Poulsen SS, Møller M, et al. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes 1996;45:832-5
  • Vrang N, Larsen PJ. Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog Neurobiol 2010;92:442-62
  • Baraboi ED, Smith P, Ferguson AV, et al. Lesions of area postrema and subfornical organ alter exendin-4-induced brain activation without preventing the hypophagic effect of the GLP-1 receptor agonist. Am J Physiol Regul Integr Comp Physiol 2010;298:R1098-110
  • Vrang N, Jelsing J, Raun K, et al. Liraglutide regulates key hypothalamic appetite-related signals in diet-induced obese rats. Diabetes 2010;59(Suppl 1):A159 (abstract 583-P)
  • Raun K, Vrang N, Jelsing J, et al. The GLP-1 analog liraglutide activates brainstem and hypothalamic neurons involved in appetite regulation. Diabetes 2010;59(Suppl 1):A159 (abstract 584-P)
  • Drucker D, Nauck M. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptiylpeptidase-4 inhibitors in type 2 diabetes. Lancet 2006;368:1696-705
  • Pratley R, Nauck M, Bailey T, et al. Liraglutide versus sitagliptin in patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet 2010;375:1447-56
  • McGill J. Liraglutide: effects beyond glycaemic control in diabetes treatment. Int J Clin Pract 201064:28-34
  • Hjøllund KR, Hughes TE, Deacon CF, et al. The dipeptidyl peptidase-4 inhibitor vildagliptin increases portal concentrations of active GLP-1 to a greater extent that the peripheral concentrations. Diabetologia 2008;57:A411
  • Kastin AJ, Akerstrom V, Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J Mol Neurosci 2002;18:7-14
  • Hölscher C, Fung K, McCurtin R, et al. Novel GLP-1 analogues can cross the blood brain barrier and enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer’s Disease. Diabetologia 2009;52(Suppl 1):S311 (abstract 790)
  • Nystrom T, Gonon AT, Sjoholm A, et al. Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept 2005;125:173-7
  • Green BD, Hand KV, Dougan JE, et al. GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys 2008;478:136-42
  • Hardikar AA, Wang XY, Williams LJ, et al. Functional maturation of fetal porcine β-cells by glucagon-like peptide 1 and cholecystokinin. Endocrinology 2002;143:3505-14
  • Movassat J, Beattie GM, Lopez AD, et al. Exendin 4 up-regulates expression of PDX 1 and hastens differentiation and maturation of human fetal pancreatic cells. J Clin Endocrinol Metab 2002;87:4775-81
  • Abraham EJ, Leech CA, Lin JC, et al. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 2002;143:3152-61
  • Scrocchi LA, Brown TJ, MaClusky N, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996;2:1254-8
  • Perry T, Lahiri DK, Chen D, et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther 2002;300:958-66
  • Luciani P, Deledda C, Benvenuti S, et al. Differentiating effects of the glucagon-like peptide-1 analogue exendin-4 in a human neuronal cell model. Cell Mol Life Sci 2010;67:3711-23
  • Mudaliar S, Henry RR. Incretin therapies: effects beyond glycemic control. Eur J Intern Med 2009;20(Suppl 2):S319-28
  • Grieve D, Cassidy R, Green B. Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1: potential therapeutic actions beyond glycaemic control. Br J Pharmacol 2009;157:1340-51
  • Tourrel C, Bailbe D, Lacorne M, et al. Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the β-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 2002;51:1443-52
  • Perfetti R, Zhou J, Doyle ME, et al. Glucagon-like peptide-1 induces cell proliferation and pancreatic duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose intolerant rats. Endocrinology 2000;141:4600-5
  • Rolin B, Larsen MO, Gotfredsen CF, et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 2002;283:E745-52
  • Bertilsson G, Patrone C, Zachrisson O, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res 2008;86:326-38
  • Belsham D, Fick L, Dalvi P, et al. Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons. FASEB J 2009;23:4256-65
  • Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004;110:955-61
  • Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004;109:962-5
  • Abu-Hamdah R, Rabiee A, Meneilly G, et al. The extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab 2009;94:1843-52
  • Farilla L, Hui H, Bertolotto C, et al. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 2002;143:4397-408
  • Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia 2002;45:1263-73
  • Buteau J, El-Assaad W, Rhodes CJ, et al. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 2004;47:806-15
  • Li Y, Hansotia T, Yusta B, et al. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003;278:471-8
  • Cornu M, Modi H, Kawamori D, et al. Glucagon-like peptide-1 increases beta-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J Biol Chem 2010;285:10538-45
  • Cornu M, Yang JY, Jaccard E, et al. Glucagon-like peptide-1 protects beta-cells against apoptosis by increasing the activity of an IGF-2/IGF-1 receptor autocrine loop. Diabetes 2009;58:1816-25
  • Ferdaoussi M, Abdelli S, Yang JY, et al. Exendin-4 protects beta-cells from interleukin-1 beta-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway. Diabetes 2008;57:1205-15
  • Burcelin R, Knauf C, Cani PD. Pancreatic alpha-cell dysfunction in diabetes. Diabetes Metab 2008;34(Suppl 2):S49-55
  • Drucker DJ, Philippe J, Mojsov S, et al. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA 1987;84:3434-8
  • Kreymann B, Ghatei MA, Williams G, et al. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 1987;2:1300-4
  • Zhou J, Wang X, Pineyro MA, et al. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes 1999;48:2358-66
  • Bjerre Knudsen L, Tang-Christensen M, Jelsing J, et al. Liraglutide: short-lived effect on gastric emptying, long-lasting effects on body weight. Diabetes 2010;59(Suppl 1):A161 (abstract 591-P)
  • Li Y, Tweedie D, Mattson MP, et al. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 2010;113:1621-31
  • Willms B, Werner J, Holst JJ, et al. Gastric emptying, glucose response, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 1996;81:327-32
  • Nauck MA, Heimesaat MM, Behle K, et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 2002;87:1239-46
  • Gutzwiller JP, Hruz P, Huber AR, et al. Glucagon-like peptide-1 is involved in sodium and water homeostasis in humans. Digestion 2006;73:142-50
  • Gutzwiller JP, Tschopp S, Bock A, et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 2004;89:3055-61
  • Yamamoto H, Kishi T, Lee CE, et al. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. J Neurosci 2003;23:2939-46
  • Gilman CP, Mattson MP. Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? Neuromolecular Med 2002;2:197-214
  • Mattson MP, Dou P, Kater SB. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J Neurosci 1988;8:2087-100
  • Mattson MP, Lee RE, Adams ME, et al. Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1988;1:865-76
  • Greig N, Mattson M, Perry TA, et al. New therapeutic strategies and drug candidates for neurodegenerative diseases. P53 and TNF-α inhibitors, and GLP-1 receptor agonists. Ann N Y Acad Sci 2004;1035:290-315
  • Hölscher C, Li L. New roles for insulin-like hormones in neuronal signalling and protection: New hopes for novel treatments of Alzheimer’s disease? Neurobiol Aging 2008;doi:10.1016/j.neurobiolaging.2008.08.023
  • Li Y, Perry TA, Kindy M, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. PNAS 2009;106:1285-90
  • Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 2004;3:169-78
  • Luchsinger JA, Gustafson D. Adiposity, type 2 diabetes and Alzheimer’s disease. J Alzheimers Dis 2009;16:693-704
  • Luchsinger JA. Adiposity, hyperinsulinemia, diabetes and Alzheimer's disease: an epidemiological perspective. Eur J Pharmacol 2008;585:119-29
  • Frautschy S, Cole G. Why pleiotropic interventions are needed for Alzheimer's disease. Mol Neurobiol 2010;41:392-409
  • Beeri MS, Schmeidler J, Silverman JM, et al. Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology 2008;71:750-7
  • Sambamurti K, Greig N, Lahiri D. Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease. Neuromolecular Med 2002;1:1-31
  • Jolivalt C, Lee C, Beiswenger K, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer’s disease and correction by insulin. J Neurisci Res 2008;86:3265-74
  • Xie L, Helmerhorst E, Taddei K, et al. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 2002;22:RC221
  • Zhao W, De Felice F, Fernandez S, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. Faseb J 2008;22:246-60
  • Gault V, Holscher C. GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. Eur J Pharmacol 2008;587:112-17
  • Gao H, Wang X, Zhang Z, et al. GLP-1 amplifies insulin signaling by up-regulation of IRbeta, IRS-1 and Glut4 in 3T3-L1 adipocytes. Endocrine 2007;32:90-5
  • Li Y, Duffy K, Ottinger M, et al. GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 2010;19:1205-19
  • Gengler S, McClean PL, McCurtin R, et al. Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice. Neurobiol Aging 2010; doi:10.1016/j.neurobiolaging.2010.02.014
  • D'Amico M, Di Filippo C, Marfella R, et al. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer's prone mice. Exp Gerontol 2010;45:202-7
  • Asmar M, Højberg PV, Deacon CF, et al. Pancreatic beta-cell responses to GLP-1 after near-normalization of blood glucose in patients with type 2 diabetes. Regul Pept 2010;160:175-80
  • Irwin, N, Clarke G, Green B, et al. Evaluation of the antidiabetic activity of DPP IV resistant N-terminally modified versus mid-chain acylated analogues of glucose-dependent insulinotropic polypeptide. Biochem Pharmacol 2006;72:719-28
  • Gandhi S, Wood N. Molecular pathogenesis of Parkinson's disease. Hum Mol Genet 2005;14:2749-55
  • Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Neurosci 2007;8:57-69
  • Whitton P. Inflammation as a potential causative factor in the aetiology of Parkinsons disease. Br J Pharmacol 2007;150:963-76
  • Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008;79:368-76
  • Chen JJ. Parkinson's disease: health-related quality of life, economic cost, and implications of early treatment. Am J Manag Care 2010;16(Suppl Implications):S87-93
  • Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007;68:384-6
  • Hu G, Jousilahti P, Bidel S, et al. Type 2 diabetes and the risk of Parkinson's disease. Diabetes Care 2007;30:842-7
  • Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation abd matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol 2009;202:431-9
  • Kim Chung le T, Hosaka T, Yoshida M, et al. Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochem Biophys Res Commun 2009;390:613-18
  • Dozier KC, Cureton EL, Kwan RO, et al. Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation. Peptides 2009;30:1735-41
  • Harkavyi A, Abuirmeileh A, Lever R, et al. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease. J Neuroinflammation 2008;21;5:19
  • Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series. EMBO Rep 2004;5:958-63
  • Spinney L. Uncovering the true prevalence of Huntington's disease. Lancet Neurol 2010; doi:10.1016/S1474-4422(10)70160-5
  • Martin B, Golden E, Carlson OD, et al. Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntingdon’s disease. Diabetes 2009;58:318-28
  • Aziz N, Swaab D, Pijl H, et al. Hypothalamic dysfunction and neuroendocrine and metabolic alterations in Huntington’s disease: clinical consequences and therapeutic implications. Rev Neurosci 2007;18:223-51
  • Hunt M, Morton A. Atypical diabetes associated with inclusion formation in the R6/2 mouse model of Huntington’s Disease is not improved by treatment with hypoglycaemic agents. Exp Brain Res 2005;166:220-9
  • Mestre T, Ferreira J, Coelho MM, et al. Therapeutic interventions for symptomatic treatment in Huntington's disease. Cochrane Database Syst Rev 2009(3):CD006456
  • Mestre T, Ferreira J, Coelho MM, et al. Therapeutic interventions for disease progression in Huntington's disease. Cochrane Database Syst Rev 2009(3):CD006455
  • Air EL, Kissela BM. Diabetes, the metabolic syndrome, and ischemic stroke: epidemiology and possible mechanisms. Diabetes Care 2007;30:3131-40
  • Mattson MP. Calcium and neurodegeneration. Aging Cell 2007;6:337-50
  • Noyan-Ashraf M, Momen M, Ban K, et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 2009;58:975-83
  • Perry TA, Holloway H, Weerasuriya A, et al. Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Exp Neurol 2007;203:293-301
  • Nakagawa A, Satake H, Nakabayashi H, et al. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Auton Neurosci 2004;110:36-43
  • Burcelin R, Da Costa A, Drucker D, et al. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor. Diabetes 2001;50:1720-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.