130
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Assembly of Staphylococcal Leukocidin into a Pore-Forming Oligomer on Detergent-Resistant Membrane Microdomains, Lipid Rafts, in Human Polymorphonuclear Leukocytes

, , &
Pages 1300-1307 | Received 15 Sep 2005, Accepted 08 Feb 2006, Published online: 22 May 2014

  • 1) Kaneko, J., and Kamio, Y., Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structure, pore-forming mechanism, and organization of the genes. Biosci. Biotechnol. Biochem., 68, 981–1007 (2004).
  • 2) Kamio, Y., Rahman, A., Nariya, H., Ozawa, T., and Izaki, K., The two staphylococcal bi-component toxins, leukocidin and γ-hemolysin, share one component in common. FEBS Lett., 321, 15–18 (1993).
  • 3) Nguyen, T. V., Kamio, Y., and Higuchi, H., Single-molecule imaging of cooperative assembly of γ-hemolysin on erythrocyte membranes. EMBO J., 19, 4968–4979 (2003).
  • 4) Olson, R., Nariya, H., Yokota, K., Kamio, Y., and Gouaux, E., Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat. Struct. Biol., 6, 134–140 (1999).
  • 5) Monma, N., Nguyen, T. V., Kaneko, J., Higuchi, H., and Kamio, Y., Essential W177 and R198 residues of LukF for phosphatidylcholine-binding and pore-formation of Staphylococcal γ-hemolysin on human erythrocyte membranes. J. Biochem., 136, 427–431 (2004).
  • 6) Sugawara, N., Tomita, T., and Kamio, Y., Assembly of Staphylococcus aureus γ-hemolysin into a pore-forming ring-shaped complex on the surface of human erythrocytes. FEBS Lett., 410, 333–337 (1997).
  • 7) Sugawara, N., Tomita, T., Sato, T., and Kamio, Y., Assembly of Staphylococcus aureus leukocidin into a pore-forming ring-shaped oligomer on human polymorphonuclear leukocytes and rabbit erythrocytes. Biosci. Biotechnol. Biochem., 63, 884–891 (1999).
  • 8) Nguyen, V. T., Higuchi, H., and Kamio, Y., Controlling pore assembly of staphylococcal γ-haemolysin by low temperature and by disulphide bond formation in double-cysteine LukF mutants. Mol. Microbiol., 45, 1485–1498 (2002).
  • 9) Sugawara-Tomita, N., Tomita, T., and Kamio, Y., Stochastic assembly of two-component staphylococcal γ-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3. J. Bacteriol., 184, 4747–4756 (2002).
  • 10) Noda, M., Kato, I., Hirayama, T., and Matsuda, F., Fixation and inactivation of staphylococcal leukocidin by phosphatidylcholine and ganglioside GM1 in rabbit polymorphonuclear leukocytes. Infect. Immun., 29, 678–684 (1980).
  • 11) Nariya, H., Izaki, K., and Kamio, Y., The C-terminal region of the S component of staphylococcal leukocidin is essential for the biological activity of the toxin. FEBS Lett., 329, 219–222 (1993).
  • 12) Nariya, H., and Kamio, Y., Identification of the essential regions for LukS- and HγII-specific functions of staphylococcal leukocidin and γ-hemolysin. Biosci. Biotechnol. Biochem., 59, 1603–1604 (1995).
  • 13) Nariya, H., Nishiyama, A., and Kamio, Y., Identification of the minimum segment in which the threonine246 residue is a potential phosphorylated site by protein kinase A for the LukS-specific function of staphylococcal leukocidin. FEBS Lett., 415, 96–100 (1997).
  • 14) Nishiyama, A., Nariya, H., and Kamio, Y., Phosphorylation of LukS by protein kinase A is crucial for the LukS-specific function of staphylococcal leukocidin on human polymorphonuclear leukocytes. Biosci. Biotechnol. Biochem., 62, 1834–1838 (1998).
  • 15) Nishiyama, A., Guerra, M. A. R. V., Sugawara, N., Yokota, K., Kaneko, J., and Kamio, Y., Identification of serin138 residue in the 4-residue segment K135K136I137S138 of LukS-I component of Staphylococcus intermedius leukocidin crucial for the LukS-I-specific function of staphylococcal leukocidin. Biosci. Biotechnol. Biochem., 66, 328–335 (2002).
  • 16) Brown, D. A., and London, E., Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem., 275, 17221–17224 (2000).
  • 17) Simons, K., and Ikonen, E., Functional rafts in cell membranes. Nature, 387, 569–572 (1997).
  • 18) Brown, D. A., and Rose, J. K., Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68, 533–534 (1992).
  • 19) Simons, K., and Toomre, D., Lipid rafts and signal transduction. Mol. Cell. Biol., 1, 31–39 (2000).
  • 20) Orlandi, P. A., and Fishman, P. H., Filipin-dependent inhibition of cholera-toxin: evidence for toxin internalization and activation through caveolae-like domains. J. Cell. Biol., 141, 905–915 (1998).
  • 21) Shogomori, H., and Futerman, A. H., Cholera toxin is found in detergent-insoluble rafts/domains at the cell surface of hippocampal neurons but is internalized via a raft-independent mechanism. J. Biol. Chem., 276, 9182–9188 (2001).
  • 22) Kovbasnjuk, O., Edidin, M., and Donowitz, M., Role of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells. J. Cell Sci., 114 (Pt. 22), 4025–4031 (2001).
  • 23) Waheed, A. A., Shimada, Y., Heijnen, H. F., Nakamura, M., Inomata, M., Hayashi, M., Iwashita, S., Slot, J. W., and Ohno-Iwashita, Y., Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc. Natl. Acad. Sci. USA, 98, 4926–4931 (2001).
  • 24) Nariya, H., Asami, I., Ozawa, T., Beppu, Y., Izaki, K., and Kamio, Y., Improved method for purification of leukocidin and γ-hemolysin components from Staphylococcus aureus. Biosci. Biotechnol. Biochem., 57, 2198–2199 (1993).
  • 25) Rahman, A., Izaki, K., Kato, I., and Kamio, Y., Nucleotide sequence of leukocidin S-component gene (lukS) from methicillin resistant Staphylococcus aureus. Biochem. Biophys. Res. Commun., 181, 138–144 (1991).
  • 26) Gietz, R. D., and Schiestl, R. H., Transforming yeast with DNA. Methods Mol. Cell. Biol., 5, 255–269 (1995).
  • 27) James, P., Halladay, J., and Craig, E. A., Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics, 144, 1425–1436 (1996).
  • 28) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 29) Guillet, V., Roblin, P., Werner, S., Coraiola, M., Menestrina, G., Monteil, H., Prevost, G., and Mourey, L., Crystal structure of leucotoxin S component: new insight into the Staphylococcal β-barrel pore-forming toxins. J. Biol. Chem., 279, 41028–41037 (2004).
  • 30) Song, L., Hobaugh, M. R., Shustak, C., Cheley, S., Bayley, H., and Gouaux, E., Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science, 274, 1859–1866 (1996).
  • 31) Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., and Kimoto, M., MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med., 189, 1777–1782 (1999).
  • 32) Pugin, J., Kravchenko, V. V., Lee, J. D., Kline, L., Ulevitch, R. J., and Tobias, P. S., Cell activation mediated by glycosylphosphatidylinositol-anchored or transmembrane forms of CD14. Infect. Immun., 66, 1175–1180 (1998).
  • 33) Triantafilou, M., Miyake, K., Golenbock, D. T., and Triantafilou, K., Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J. Cell Sci., 115 (Pt 12), 2603–2611 (2002).
  • 34) Noda, M., Kato, I., Hirayama, T., and Matsuda, F., Mode of action of staphylococcal leukocidin: effects of the S and F components on the activities of membrane-associated enzymes of rabbit polymorphonuclear leukocytes. Infect. Immun., 35, 38–45 (1982).
  • 35) Diep, D. B., Nelson, K. L., Raja, S. M., Pleshak, E. N., and Buckley, J. T., Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J. Biol. Chem., 273, 2355–2360 (1998).
  • 36) Tanaka, Y., Amano, F., Kishi, H., Nishijima, M., and Akamatsu, Y., Degradation of arachidonyl phospholipids catalyzed by two phospholipases A2 and phospholipase C in a lipopolysaccharide-treated macrophage cell line RAW264.7. Arch. Biochem. Biophys., 272, 210–218 (1989).
  • 37) Kaneko, J., Muramoto, K., and Kamio, Y., Gene of the LukF-PV-Like component of Panton-Valentine leukocidin in Staphylococcus aureus P83 is linked with lukM. Biosci. Biotechnol. Biochem., 61, 541–544 (1997).
  • 38) Younis, A., Krifucks, O., Fleminger, G., Heller, E. D., Gollop, N., Saran, A., and Leitner, G., Staphylococcus aureus leucocidin, a virulence factor in bovine mastitis. J. Dairy Res., 72, 188–194 (2005).
  • 39) Gravet, A., Colin, D. A., Keller, D., Giradot, R., Monteil, H., and Prevost, G., Characterization of a novel structural member, LukE-LukD, of the bi-component staphylococcal leucotoxin family. FEBS Lett., 436, 202–207 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.