302
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of a Glycosylated Peptide Thioester by the Boc Strategy and Its Application to Segment Condensation

, , , , , & show all
Pages 1338-1349 | Received 18 Nov 2005, Accepted 19 Jan 2006, Published online: 22 May 2014

  • 1) Hojo, H., and Aimoto, S., Polypeptide synthesis using the S-alkyl thioester of a partially protected peptide segment. Synthesis of the DNA-binding domain of c-Myb protein (142-193)-NH2. Bull. Chem. Soc. Jpn., 64, 111–117 (1991).
  • 2) Aimoto, S., Polypeptide synthesis by the thioester method. Biopolymers (Peptide Science), 51, 247–265 (1999).
  • 3) Dawson, P. E., Muir, T. W., Clark-Lewis, I., and Kent, S. B. H., Synthesis of proteins by native chemical ligation. Science, 266, 776–779 (1994).
  • 4) Dawson, P. E., and Kent, S. B. H., Synthesis of native proteins by chemical ligation. Ann. Rev. Biochem., 69, 923–960 (2000).
  • 5) Futaki, S., Sogawa, K., Maruyama, J., Asahara, T., Niwa, M., and Hojo, H., Preparation of peptide thioesters using Fmoc-solid-phase peptide synthesis and its application to the construction of a template-assembled synthetic protein (TASP). Tetrahedron Lett., 38, 6237–6240 (1997).
  • 6) Li, X., Kawakami, T., and Aimoto, S., Direct preparation of peptide thioesters using an Fmoc solid-phase method. Tetrahedron Lett., 39, 8669–8672 (1998).
  • 7) Shin, Y., Winans, K. A., Backes, B. J., Kent, S. B. H., Ellman, J. A., and Bertozzi, C. R., Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation. J. Am. Chem. Soc., 121, 11684–11689 (1999).
  • 8) Alsina, J., Yokumu, T. S., Albericio, F., and Barany, G., Backbone amide linker (BAL) strategy for Nα-9-fluorenylmethoxycarbonyl (Fmoc) solid-phase synthesis of unprotected peptide p-nitroanilides and thioesters. J. Org. Chem., 64, 8761–8769 (1999).
  • 9) Ingenito, R., Bianchi, E., Fattori, D., and Pessi, A., Solid phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry. J. Am. Chem. Soc., 121, 11369–11374 (1999).
  • 10) Clippingdale, A. B., Barrow, C. J., and Wade, J. D., Peptide thioester preparation by Fmoc solid phase peptide synthesis for use in native chemical ligation. J. Peptide Sci., 6, 225–234 (2000).
  • 11) Swinnen, D., and Hilvert, D., Facile Fmoc-compatible solid-phase synthesis of peptide C-terminal thioesters. Org. Lett., 2, 2439–2442 (2000).
  • 12) Mezo, A. R., Cheng, R. P., and Imperiali, B., Oligomerization of uniquely folded mini-protein motifs: development of a homotrimeric ββα peptide. J. Am. Chem. Soc., 123, 3885–3891 (2001).
  • 13) Brask, J., Albericio, F., and Jensen, K. J., Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters. Org. Lett., 5, 2951–2953 (2003).
  • 14) Hojo, H., Haginoya, E., Matsumoto, Y., Nakahara, Y., Nabeshima, K., Toole, B. P., and Watanabe, Y., The first synthesis of peptide thioester carrying N-linked core pentasaccharide through modified Fmoc thioester preparation: synthesis of an N-glycosylated Ig domain of emmprin. Tetrahedron Lett., 44, 2961–2964 (2003).
  • 15) Warren, J. D., Miller, J. S., Keding, S. J., and Danishefsky, S. J., Toward fully synthetic glycoproteins by ultimately convergent routes: a solution to a long-standing problem. J. Am. Chem. Soc., 126, 6576–6578 (2004).
  • 16) Botti, P., Villain, M., Manganiello, S., and Gaertner, H., Native chemical ligation through in situ O to S acyl shift. Org. Lett., 6, 4861–4864 (2004).
  • 17) Macmillan, D., and Bertozzi, C. R., Modular assembly of glycoproteins: towards the synthesis of GlyCAM-1 by using expressed protein ligation. Angew. Chem. Int. Ed., 43, 1355–1359 (2004).
  • 18) Hojo, H., Matsumoto, Y., Nakahara, Y., Ito, E., Suzuki, Y., Suzuki, M., Suzuki, A., and Nakahara, Y., Chemical synthesis of 23-kDa glycoprotein by repetitive segment condensation: a synthesis of MUC2 basal motif carrying multiple O-GalNAc moieties. J. Am. Chem. Soc., 127, 13720–13725 (2005).
  • 19) Marcaurelle, L. A., Mizoue, L. S., Wilken, J., Oldham, L., Kent, S. B. H., Handel, T. M., and Bertozzi, C. R., Chemical synthesis of lymphotactin: a glycosylated chemokine with a C-terminal mucin-like domain. Chem. Eur. J., 7, 1129–1132 (2001).
  • 20) Lavielle, S., Ling, N. C., and Guillemin, R. C., Solid-phase synthesis of two glycopeptides containing the amino acid sequence 5 to 9 of somatostatin. Carbohydr. Res., 89, 221–228 (1981).
  • 21) Teshima, T., Urabe, T., Yamamoto, T., Isaka, S., Kumagaye, K., Nakajima, K., and Shiba, T., Solid-phase synthesis of the antibacterial glycopeptide, formaecin, using Boc-strategy. In “Peptide Science 1998,” ed. Kondo, M., Protein Research Foundation, Osaka, pp. 157–160 (1999).
  • 22) Mizuno, M., Haneda, K., Iguchi, R., Muramoto, I., Kawakami, T., Aimoto, S., Yamamoto, K., and Inazu, T., Synthesis of a glycopeptide containing oligosaccharides: chemoenzymatic synthesis of eel calcitonin analogues having natural N-linked oligosaccharides. J. Am. Chem. Soc., 121, 284–290 (1999).
  • 23) Hojo, H., Watabe, J., Nakahara, Y., Nakahara, Y., Ito, Y., Nabeshima, K., and Toole, B. P., Synthesis of the extracellular Ig domain I of emmprin carrying a chitobiose unit. Tetrahedron Lett., 42, 3001–3004 (2001).
  • 24) Ellis, S. M., Nabeshima, K., and Biswas, C., Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res., 49, 3385–3391 (1989).
  • 25) Nabeshima, K., Kataoka, H., Koono, M., and Toole, B. P., Activation and induction of collagenases. In “Collagenases,” ed. Hoeffler, W., R. G. Landes Company, Texas, pp. 91–113 (1999).
  • 26) Mort, A. J., and Lamport, D. T., Anhydrous hydrogen fluoride deglycosylates glycoproteins. Anal. Biochem., 82, 289–309 (1977).
  • 27) Kerekgyarto, J., Agoston, K., Batta, G., Kamerling, J. P., and Vliegenthart, J. F. G., Synthesis of fully and partially benzylated glycosyl azides via thioalkyl glycosides as precursors for the preparation of N-glycopeptides. Tetrahedron Lett., 39, 7189–7192 (1998).
  • 28) Tam, J. P., Heath, W. F., and Merrifield, R. B., SN2 deprotection of synthetic peptides with a low concentration of HF in dimethyl sulfide: evidence and application in peptide synthesis. J. Am. Chem. Soc., 105, 6442–6455 (1983).
  • 29) King, D. S., Fields, C. G., and Fields, G. B., A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int. J. Peptide Protein Res., 36, 255–266 (1990).
  • 30) Tsunenaga, M., Goto, Y., Kawata, Y., and Hamaguchi, K., Unfolding and refolding of a type κ immunoglobulin light chain and its variable and constant fragments. Biochemistry, 26, 6044–6051 (1987).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.