354
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Efficient Production of 2-Deoxyribose 5-Phosphate from Glucose and Acetaldehyde by Coupling of the Alcoholic Fermentation System of Baker’s Yeast and Deoxyriboaldolase-Expressing Escherichia coli

, , , , , , , & show all
Pages 1371-1378 | Received 05 Dec 2005, Accepted 19 Feb 2006, Published online: 22 May 2014

  • 1) Aoyama, H., Stereoselective synthesis of anomers of 5-substituted 2′deoxyuridines. Bull. Chem. Soc. Jpn., 60, 2073–2077 (1987).
  • 2) Kawakami, H., Matsushita, M., Naoi, Y., Itoh, K., and Yoshikoshi, H., The synthesis of 2′-deoxyadenosine via a stereospecific coupling reaction. Chem. Lett., 235–238 (1989).
  • 3) Park, M., and Rizzo, C. J., Stereocontrolled de novo synthesis of 2′-deoxynucleosides. J. Org. Chem., 61, 6092–6093 (1996).
  • 4) Komatsu, H., Awano, H., Ishibashi, H., Oikawa, T., Ikeda, I., and Araki, T., Chemo-enzymatic synthesis of natural and unnatural 2′-deoxynucleosides. Nucl. Acids Res. Suppl., 101–102 (2003).
  • 5) Barbas, F. C., Wang, Y. F., and Wong, C. H., Deoxyribose 5-phosphate aldolase as a synthetic catalyst. J. Am. Chem. Soc., 112, 2013–2014 (1990).
  • 6) Gijsen, J. H., and Wong, C. H., Sequential one-pot aldol reactions catalyzed by 2-deoxyribose-5-phosphate aldolase and fructose-1,6-diphosphate aldolase. J. Am. Chem. Soc., 117, 2947–2948 (1995).
  • 7) Greenberg, A. W., Varvak, A., Hanson, R. S., Wong, K., Huang, H., Chen, P., and Burk, J. M., Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. Proc. Natl. Acad. Sci. USA, 101, 5788–5793 (2004).
  • 8) Ogawa, J., Saito, K., Sakai, T., Horinouchi, N., Kawano, T., Matsumoto, S., Sasaki, M., Mikami, Y., and Shimizu, S., Microbial production of 2-deoxyribose 5-phosphate from acetaldehyde and triose phosphate for the synthesis of 2′-deoxyribonucleosides. Biosci. Biotechnol. Biochem., 67, 933–936 (2003).
  • 9) Horinouchi, N., Ogawa, J., Sakai, T., Kawano, T., Matsumoto, S., Sasaki, M., Mikami, Y., and Shimizu, S., Construction of deoxyriboaldolase-expressing Escherichia coli and its application to 2-deoxyribose 5-phosphate synthesis from glucose and acetaldehyde for 2′-deoxyribonucleoside production. Appl. Environ. Microbiol., 69, 3791–3797 (2003).
  • 10) Tochikura, T., Production of a nucleotide-related substance by yeast and utilization of fermentation energy in the biosynthetic process. Hakko Kogaku Kaishi (in Japanese), 56, 508–526 (1978).
  • 11) Tochikura, T., Kuwahara, M., Yagi, S., Okamoto, H., Tominaga, Y., Kano, T., and Ogata, K., Fermentation and metabolism of nucleic acid-related compounds in yeast. J. Ferment. Technol., 45, 511–529 (1967).
  • 12) Tochikura, T., Kariya, Y., Yano, T., Tachiki, T., and Kimura, A., Study of the utilization of fermentation and respiratory energy in the biosynthetic process: I. Fermentative production of phosphoric acid anhydrides and phosphate esters. Amino Acids Nucleic Acids (in Japanese), 29, 59–74 (1974).
  • 13) Harden, A., and Young, W., The alcoholic fermentation of yeast-juice. Proc. R. Soc. Lond. Ser. B, 77, 405–420 (1905).
  • 14) Wakisaka, S., Ohshima, Y., Ogawa, M., Tochikura, T., and Tachiki, T., Characteristics and efficiency of glutamine production by coupling of a bacterial glutamine synthetase reaction with the alcoholic fermentation system of baker’s yeast. Appl. Environ. Microbiol., 64, 2953–2957 (1998).
  • 15) Yamamoto, S., Wakayama, M., and Tachiki, T., Theanine production by coupled fermentation with energy transfer employing Pseudomonas taetrolens Y-30 glutamine synthetase and baker’s yeast cells. Biosci. Biotechnol. Biochem., 69, 784–789 (2005).
  • 16) Stumpf, P. K., A colorimetric method for the determination of deoxyribonucleic acid. J. Biol. Chem., 169, 367–371 (1974).
  • 17) Fujio, T., and Maruyama, A., Enzymatic production of pyrimidine nucleotides using Corynebacterium ammoniagenes cells and recombinant Escherichia coli cells: enzymatic production of CDP-choline from orotic acid and choline chloride (part I). Biosci. Biotechnol. Biochem., 61, 956–959 (1997).
  • 18) Ishii, K., and Shiio, I., Improved inosine production and derepression of purine nucleotide biosynthetic enzymes in 8-azaguanine resistant mutants of Bacillus subtilis. Agric. Biol. Chem., 36, 1511–1522 (1972).
  • 19) Fruya, A., Kato, F., and Nakayama, K., Accumulation of 6-azauridine by mutants of Brevibacterium ammoniagenes. Agric. Biol. Chem., 39, 767–771 (1975).
  • 20) Ogata, K., The microbial production of nucleic acid-related compounds. Adv. Appl. Microbiol., 19, 209–247 (1975).
  • 21) Takayama, S., McGarvey, G. J., and Wong, C. H., Microbial aldolases and transketolases: new biocatalytic approaches to simple and complex sugars. Annu. Rev. Microbiol., 51, 285–310 (1997).
  • 22) Fessner, W. D., and Helaine, V., Biocatalytic synthesis of hydroxylated natural products using aldolases and related enzymes. Curr. Opin. Biotechnol., 12, 574–586 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.