638
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Advanced NMR Approaches for a Detailed Structure Analysis of Natural Products

Pages 1803-1812 | Received 09 Dec 2005, Accepted 24 Mar 2006, Published online: 22 May 2014

  • 1) Bendall, M. R., Doddrell, D. M., and Pegg, D. T., Editing of 13C NMR spectra. A pulse sequence for the generation of subspectra. J. Am. Chem. Soc., 103, 4603–4605 (1981).
  • 2) Morris, G. A., and Freeman, R., Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Am. Chem. Soc., 101, 760–762 (1979).
  • 3) Bodenhausen, G., and Ruben, D. J., Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett., 69, 185–189 (1980).
  • 4) Willker, W., Leibfritz, D., Kerssebaum, R., and Bermel, W., Gradient selection in inverse heteronuclear correlation spectroscopy. Magn. Reson. Chem., 31, 287–292 (1993).
  • 5) Müller, L., Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J. Am. Chem. Soc., 101, 4481–4484 (1979).
  • 6) Hurd, R. E., and John, B. K., Gradient-enhanced proton-detected heteronuclear multiple-quantum coherence spectroscopy. J. Magn. Reson., 91, 648–653 (1991).
  • 7) Kessler, H., Schmieder, P., and Kurz, M., Implementation of the DEPT sequence in inverse shift correlation: the DEPT-HMQC. J. Magn. Reson., 85, 400–405 (1989).
  • 8) Zhang, X., and Wang, C., 1H-detected editable heteronuclear multiple-quantum correlation experiment at natural abundance. J. Magn. Reson., 91, 618–623 (1991).
  • 9) Davis, D. G., Improved multiplet editing of proton-detected, heteronuclear shift-correlation spectra. J. Magn. Reson., 91, 665–672 (1991).
  • 10) Parella, T., Sánchez-Ferrando, F., and Virgili, A., Clean proton editing using a gradient-selected multiple-quantum filter. J. Magn. Reson., A117, 78–83 (1995).
  • 11) Braunschweiler, L., and Ernst, R. R., Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson., 53, 521–528 (1983).
  • 12) Hurd, R. E., Gradient-enhanced spectroscopy. J. Magn. Reson., 87, 422–428 (1990).
  • 13) Parella, T., Sánchez-Ferrando, F., and Virgili, A., Quick recording of pure absorption 2D TOCSY, ROESY, and NOESY spectra using pulsed field gradients. J. Magn. Reson., 125, 145–148 (1997).
  • 14) Jeener, J., Meier, B. H., Bachmann, P., and Ernst, R. R., Investigation of exchange process by two-dimensional NMR spectroscopy. J. Chem. Phys., 71, 4546–4563 (1979).
  • 15) States, D. J., Haberkorn, R. A., and Ruben, D. J., A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. J. Magn. Reson., 48, 286–292 (1982).
  • 16) Wagner, R., and Berger, S., Gradient-selected NOESY. A fourfold reduction of measurement time for the NOESY experiment. J. Magn. Reson., A123, 119–121 (1996).
  • 17) Bothner-By, A. A., Stephens, R. L., Lee, J.-M., Warren, C. D., and Jeanloz, R. W., Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc., 106, 811–813 (1984).
  • 18) Yamamori, A., Fukushi, E., Onodera, S., Kawabata, J., and Shiomi, N., NMR analysis of mono-and difructosyllactosucrose synthesized by 1F-fructosyltransferase purified from roots of asparagus (Asparagus officinalis L.). Magn. Reson. Chem., 40, 541–544 (2002).
  • 19) Shimbo, K., Tsuda, M., Fukushi, E., Kawabata, J., and Kobayashi, J., Dytesinins A and B, new clerodane-type diterpenes with a cyclopropane ring from the tunicate Cystodytes sp. Tetrahedron, 56, 7923–7926 (2000).
  • 20) Fukushi, E., Tanabe, S., Watanabe, M., and Kawabata, J., NMR analysis of a model pentapeptide, acetyl-Gln-Gln-Gln-Pro-Pro, as an epitope of wheat allergen. Magn. Reson. Chem., 36, 741–746 (1998).
  • 21) Bax, A., and Morris, G. A., An improved method for heteronuclear chemical shifts correlation by two-dimensional NMR. J. Magn. Reson., 42, 501–505 (1981).
  • 22) Bendall, M. R., and Pegg, D. T., 1H–13C two-dimensional chemical shift correlation spectroscopy using DEPT. J. Magn. Reson., 53, 144–148 (1983).
  • 23) Pegg, D. T., and Bendall, M. R., Two-dimensional DEPT NMR spectroscopy. J. Magn. Reson., 55, 114–127 (1983).
  • 24) Bax, A., Ikura, M., Kay, L. E., Torchia, D. A., and Tschudin, R., Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins. J. Magn. Reson., 86, 304–318 (1990).
  • 25) Fukushi, E., Onodera, S., Yamamori, A., Shiomi, N., and Kawabata, J., NMR analysis of tri-and tetrasaccharides from asparagus. Magn. Reson. Chem., 38, 1005–1011 (2000).
  • 26) Okada, H., Fukushi, E., Onodera, S., Nishimoto, T., Kawabata, J., Kikuchi, M., and Shiomi, N., Synthesis and structural analysis of five novel oligosaccharides prepared by glucosyl transfer from β-D-glucose 1-phosphate to isokestose and nystose using Thermoanaerobacter brockii kojibiose phosphorylase. Carbohydr. Res., 338, 879–885 (2003).
  • 27) Domke, T., A new method to distinguish between direct and remote signals in proton-relayed X, H correlations. J. Magn. Reson., 95, 174–177 (1991).
  • 28) Lerner, L., and Bax, A., Sensitivity-enhanced two-dimensional heteronuclear relayed coherence transfer NMR spectroscopy. J. Magn. Reson., 69, 375–380 (1986).
  • 29) Martin, G. E., Spitzer, T. D., Crouch, R. C., Luo, J.-K., and Castle, N., Inverted and suppressed direct response HMQC-TOCSY spectra. A convenient method of spectral editing. J. Heterocyclic Chem., 29, 577–582 (1992).
  • 30) Crouch, R. C., Spitzer, T. D., and Martin, G. E., Strategies for the phase editing of relayed responses in 2D HMQC-TOCSY spectra. Magn. Reson. Chem., 30, S71–S73 (1992).
  • 31) Takahashi, N., Okada, H., Fukushi, E., Onodera, S., Nishimoto, T., Kawabata, J., and Shiomi, N., Structural analysis of six novel oligosaccharides synthesized by glucosyl transfer from β-D-glucose 1-phosphate to raffinose and stachyose using Thermoanaerobacter brockii kojibiose phosphorylase. Tetrahedron: Asymmetry, 16, 57–63 (2005).
  • 32) Bax, A., and Summers, M. F., 1H and 13C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc., 108, 2093–2094 (1986).
  • 33) Summers, M. F., Marzilli, L. G., and Bax, A., Complete 1H and 13C assignments of coenzyme B12 through the use of new two-dimensional NMR experiments. J. Am. Chem. Soc., 108, 4285–4294 (1986).
  • 34) Furihata, K., and Seto, H., Constant time HMBC (CT-HMBC), a new HMBC technique useful for improving separation of cross peaks. Tetrahedron Lett., 39, 7337–7340 (1998).
  • 35) Kubota, T., Tsuda, M., Doi, Y., Takahashi, A., Nakamichi, H., Ishibashi, M., Fukushi, E., Kawabata, J., and Kobayashi, J., Luteophanols B and C, new polyhydroxyl compounds from marine dinoflagellate Amphidinium sp. Tetrahedron, 54, 14455–14464 (1998).
  • 36) Aue, W. P., Batholdi, E., and Ernst, R. R., Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys., 64, 2229–2246 (1975).
  • 37) von Kienlin, M., Moonen, C. T. W., van der Toorn, A., and van Zijl, P. C. M., Rapid recording of solvent-supressed 2D COSY spectra with inherent quadrature detection using pulsed field gradients. J. Magn. Reson., 93, 423–429 (1991).
  • 38) Kawabata, J., Fukushi, E., and Mizutani, J., Symmetric sesquiterpene dimer from Chloranthus serratus. Phytochemistry, 32, 1347–1349 (1993).
  • 39) Kawabata, J., Fukushi, E., and Mizutani, J., 2D 13C-coupled HMQC-ROESY: a probe for NOEs between equivalent protons. J. Am. Chem. Soc., 114, 1115–1117 (1992).
  • 40) Matsumori, N., Kaneno, D., Murata, M., Nakamura, H., and Tachibana, K., Stereochemical determination of acyclic structures based on carbon–proton spin-coupling constants. A method of configuration analysis for natural products. J. Org. Chem., 64, 866–876 (1999).
  • 41) Marquez, B. L., Gerwick, W. H., and Williamson, R. T., Survey of NMR experiments for the determination of n J(C, H) heteronuclear coupling constants in small molecules. Magn. Reson. Chem., 39, 499–530 (2001).
  • 42) Kurz, M., Schmieder, P., and Kessler, H., HETLOC, an efficient method for determining heteronuclear long-range couplings with heteronuclei in natural abundance. Angew. Chem. Int. Ed. Engl., 30, 1329–1331 (1991).
  • 43) Wollborn, U., and Leibfritz, D., Measurement of heteronuclear long-range coupling constants from inverse homonuclear 2D NMR spectra. J. Magn. Reson., 98, 142–146 (1992).
  • 44) Uhrín, D., Batta, G., Hruby, V. J., Barlow, P. N., and Kövér, K. E., Sensitivity- and gradient-enhanced hetero (ω1) half-filtered TOCSY experiment for measuring long-range heteronuclear coupling constants. J. Magn. Reson., 130, 155–161 (1998).
  • 45) Furihata, K., and Seto, H., J-resolved HMBC, a new NMR technique for measuring heteronuclear long-range coupling constants. Tetrahedron Lett., 40, 6271–6275 (1999).
  • 46) Williamson, R. T., Marquez, B. L., Gerwick, W. H., Martin, G. E., and Krishnamurthy, V. V., J-IMPEACH-MBC: a new concatenated NMR experiment for F 1 scalable, J-resolved HMBC. Magn. Reson. Chem., 39, 127–132 (2001).
  • 47) Gotfredsen, C. H., Meissner, A., Duus, J. Ø., and Sørensen, O. W., New methods for measuring 1H–31P coupling constants in nucleic acids. Magn. Reson. Chem., 38, 692–695 (2000).
  • 48) Meissner, A., and Sørensen, O. W., Measurement of J(HH) and long-range J(X, H) coupling constants in small molecules. Broadband XLOC and J-HMBC. Magn. Reson. Chem., 39, 49–52 (2001).
  • 49) Wollborn, U., and Leibfritz, D., Inverse editing of protons in two-dimensional homonuclear and heteronuclear relayed COSY spectra. Magn. Reson. Chem., 29, 238–243 (1991).
  • 50) Willker, W., Wollborn, U., and Leibfritz, D., Exact measurement of 3 J CH coupling constants using proton-detected editing and selection sequence. J. Magn. Reson., B101, 83–86 (1993).
  • 51) Stelten, J., and Leibfritz, D., Clean HX and H2X proton selection using gradients: gs HnX-HYSEL. Magn. Reson. Chem., 34, 951–954 (1996).
  • 52) Fukushi, E., and Kawabata, J., Heteronuclear long-range couplings from displacement of signals in two 1D subspectra. J. Magn. Reson., A108, 103–105 (1994).
  • 53) Bazzo, R., Barbato, G., and Cicero, D. O., Accurate measurement of heteronuclear long-range coupling constants from 1D subspectra in crowded spectral regions. J. Magn. Reson., A117, 267–271 (1995).
  • 54) Yang, D., and Nagayama, K., A sensitivity-enhanced method for measuring heteronuclear long-range coupling constants from the displacement of signals in two 1D subspectra. J. Magn. Reson., A118, 117–121 (1996).
  • 55) Matsumori, N., Murata, M., and Tachibana, K., Conformational analysis of natural products using long-range carbon–proton coupling constants: three-dimensional structure of okadaic acid in solution. Tetrahedron, 51, 12229–12238 (1995).
  • 56) Davis, D. G., Proton NMR detection of long-range heteronuclear multiquantum coherences in proteins: the complete assignment of the quaternary aromatic 13C chemical shifts in lysozyme. J. Am. Chem. Soc., 111, 5466–5468 (1989).
  • 57) Hayakawa, Y., Yamashita, T., Mori, T., Nagai, K., Shin-ya, K., and Watanabe, H., Structure of tyroscherin, an antitumor antibiotic against IGF-1-dependent cells from Pseudallesheria sp. J. Antibiotics, 57, 634–638 (2004).
  • 58) Katakawa, K., Kitajima, M., Aimi, N., Seki, H., Yamaguchi, K., Furihata, K., Harayama, T., and Takayama, H., Structure elucidation and synthesis of lycoposerramine-B, a novel oxime-containing Lycopodium alkaloid from Lycopodium serratum Thunb. J. Org. Chem., 70, 658–663 (2005).
  • 59) Kessler, H., Griesinger, C., Zarbock, J., and Loosli, H. R., Assignment of carbonyl carbons and sequence analysis in peptides by heteronuclear shift correlation via small coupling constants with broadband decoupling in t 1 (COLOC). J. Magn. Reson., 57, 331–336 (1984).
  • 60) Furihata, K., and Seto, H., Decoupled HMBC (D-HMBC), an improved technique of HMBC. Tetrahedron Lett., 36, 2817–2820 (1995).
  • 61) Bax, A., Freeman, R., and Frenkiel, T. A., An NMR technique for tracing the carbon skeleton of an organic molecule. J. Am. Chem. Soc., 103, 2102–2104 (1981).
  • 62) Turner, D. L., Carbon-13 autocorrelateion NMR using double-quantum coherence. J. Magn. Reson., 49, 175–178 (1982).
  • 63) Koshino, H., and Uzawa, J., PFG-INADEQUATE for detection of two and three bond 13C–13C couplings. Bull. Magn. Reson., 17, 260–261 (1995).
  • 64) Willker, W., and Leibfritz, D., Gradient selection of coherences in experiments with carbon detection. Magn. Reson. Chem., 32, 665–669 (1994).
  • 65) Buddrus, J., and Bauer, H., Direct identification of the carbon skeleton of organic compounds using double quantum coherence 13C-NMR spectroscopy. The INADEQUATE pulse sequence. Angw. Chem. Int. Ed. Engl., 26, 625–642 (1987).
  • 66) Buddrus, J., and Lambert, J., Connectivities in molecules by INADEQUATE: recent developments. Magn. Reson. Chem., 40, 3–23 (2002).
  • 67) Reif, B., Köck, M., Kerssebaum, R., Kang, H., Fenical, W., and Griesinger, C., ADEQUATE, a new set of experiments to determine the constitution of small molecules at natural abundance. J. Magn. Reson., A118, 282–285 (1996).
  • 68) Levitt, M. H., and Ernst, R. R., Improvement of pulse performance in NMR coherence transfer experiments. A compensated INADEQUATE experiment. Mol. Phys., 50, 1109–1124 (1983).
  • 69) Torres, A. M., Nakashima, T. T., McClung, R. E. D., and Muhandiram, D. R., Improvement of INADEQUATE using compensated delays and pulses. J. Magn. Reson., 99, 99–117 (1992).
  • 70) Kessler, H., Bermel, W., and Griesinger, C., Determination of carbon–carbon connectivities, assignment of quarternary carbons, and extraction of carbon–carbon coupling constants by carbon-relayed hydrogen-carbon spectroscopy. J. Magn. Reson., 62, 573–579 (1985).
  • 71) Lee, K. S., and Morris, G. A., An alternative to the 2D INADEQUATE experiment for detecting scalar coupling correlations between protonated and unprotonated carbons. Magn. Reson. Chem., 25, 176–178 (1987).
  • 72) Kawabata, J., and Fukushi, E., Application of DEPT C–C relay in spectrum editing by multiplicities of neighboring protonated carbons and accurate determination of 13C–13C coupling constants. J. Magn. Reson., A107, 173–177 (1994).
  • 73) Kawabata, J., and Fukushi, E., 2D DEPT C–C relay. Sensitivity enhanced clean two-dimensional C–C COSY without double-quantum filtration. J. Magn. Reson., A117, 88–90 (1995).
  • 74) Fukushi, E., and Kawabata, J., Application of 1D BIRD or X-filtered DEPT long-range C–C relay for detection of proton and carbon via four bonds and measuring long-range 13C–13C coupling constants. Magn. Reson. Chem., 44, 475–480 (2006).
  • 75) Sparks, S. W., and Ellis, P. D., DEPT polarization transfer for the INADEQUATE experiments. J. Magn. Reson., 62, 1–11 (1985).
  • 76) Podkorytov, I. S., Seven-pulse sequence DEPT-INADEQUATE. J. Magn. Reson., 89, 129–132 (1990).
  • 77) Sørensen, O. W., Freeman, R., Frankiel, T., Mareci, T. H., and Schuck, R., Observation of 13C–13C couplings with enhanced sensitivity. J. Magn. Reson., 46, 180–184 (1982).
  • 78) Fukushi, E., and Kawabata, J., Detection of long-range JCC by 1D and 2D DEPT long-range C–C relay. Symposium papers of the 45th Symposium on the chemistry of natural products, 2003, pp. 317–322 (2003).
  • 79) Tsuda, M., Izui, N., Shimbo, K., Sato, M., Fukushi, E., Kawabata, J., Katsumata, K., Horiguchi, T., and Kobayashi, J., Amphidinolide X, a novel 16-membered macrodiolide from dinoflagellate Amphidinium sp. J. Org. Chem., 68, 5339–5345 (2003).
  • 80) Koshino, H., and Uzawa, J., Pulsed field gradient 15N HMBC. Kagaku To Seibutsu (in Japanese), 33, 252–258 (1995).
  • 81) Martin, G. E., and Hadden, C. E., Long-range 1H-15N heteronuclear shift correlation at natural abundance. J. Nat. Prod., 63, 543–585 (2000).
  • 82) Kawabata, J., Fukushi, E., and Mizutani, J., Sesquiterpene dimers from Chloranthus japonicus. Phytochemistry, 39, 121–125 (1995).
  • 83) Uzawa, J., and Takeuchi, S., Application of selective 13C-{1H} nuclear Overhauser effects with low-power 1H irradiation in 13C NMR spectroscopy. Org. Magn. Reson., 11, 502–506 (1978).
  • 84) Seto, H., Sasaki, T., Yonehara, H., and Uzawa, J., Studies on the biosynthesis of pentalenolactone. Part I. Application of long range selective proton decoupling (LSPD) and selective 13C {1H} NOE in the structural elucidation of pentalenolactone G. Tetrahedron Lett., 10, 923–926 (1978).
  • 85) Fukushi, E., Kawabata, J., and Mizutani, J., Discrimination of two methylene groups in non-symmetric succinate esters in sesquiterpene dimers by heteronuclear 13C {1H} NOE spectroscopy. Magn. Reson. Chem., 33, 909–912 (1995).
  • 86) Krishnamurthy, V. V., Russell, D. J., Hadden, C. E., and Martin, G. E., 2 J, 3 J-HMBC: a new long-range heteronuclear shift correlation technique capable of differentiating 2 J CH from 3 J CH correlations to protonated carbons. J. Magn. Reson., 146, 232–239 (2000).
  • 87) Sprang, T., and Bigler, P., A new technique for differentiating between 2 J(C, H) and 3⁄4 J(C, H) connectivities. Magn. Reson. Chem., 41, 177–182 (2003).
  • 88) Nyberg, N. T., Duus, J. Ø., and Sørensen, O. W., Heteronuclear two-bond correlation: suppressing heteronuclear three-bond or higher NMR correlations while enhancing two-bond correlations even for vanishing 2 J CH. J. Am. Chem. Soc., 127, 6154–6155 (2005).
  • 89) Kovacs, H., Moskau, D., and Spraul, M., Cryogenic cooled probes—a leap in NMR technology. Prog. Nucl. Magn. Reson. Spectrosc., 46, 131–155 (2005).
  • 90) Martin, G. E., and Hadden, C. E., Comparison of 1.7 mm submicro and 3 mm micro gradient NMR probes for the acquisition of 1H–13C and 1H–15N heteronuclear shift correlation data. Magn. Reson. Chem., 37, 721–729 (1999).
  • 91) http://www.geocities.com/˜Shigemi/
  • 92) Takahashi, S., and Nagayama, K., A novel NMR microcell with symmetric geometry. J. Magn. Reson., 76, 347–351 (1988).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.