710
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Oxidative Stress Induces Phosphoenolpyruvate Carboxykinase Expression in H4IIE Cells

, , &
Pages 2191-2198 | Received 14 Mar 2006, Accepted 29 May 2006, Published online: 22 May 2014

  • 1) Gastaldelli, A., Toschi, E., Pettiti, M., Frascerra, S., Quinones-Galvan, A., Sironi, A. M., Natali, A., and Ferrannini, E., Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes, 50, 1807–1812 (2001).
  • 2) Perriello, G., Pampanelli, S., Del Sindaco, P., Lalli, C., Ciofetta, M., Volpi, E., Santeusanio, F., Brunetti, P., and Bolli, G. B., Evidence of increased systemic glucose production and gluconeogenesis in an early stage of NIDDM. Diabetes, 46, 1010–1016 (1997).
  • 3) DeFronzo, R. A., Simonson, D., and Ferrannini, E., Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 23, 313–319 (1982).
  • 4) Bogardus, C., Lillioja, S., Howard, B. V., Reaven, G., and Mott, D., Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects. J. Clin. Invest., 74, 1238–1246 (1984).
  • 5) Friedman, J. E., Yun, J. S., Patel, Y. M., McGrane, M. M., and Hanson, R. W., Glucocorticoids regulate the induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes. J. Biol. Chem., 268, 12952–12957 (1993).
  • 6) Hofmann, C. A., Edwards, C. W., 3rd, Hillman, R. M., and Colca, J. R., Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression. Endocrinology, 130, 735–740 (1992).
  • 7) Valera, A., Pujol, A., Pelegrin, M., and Bosch, F., Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. USA, 91, 9151–9154 (1994).
  • 8) Sun, Y., Liu, S., Ferguson, S., Wang, L., Klepcyk, P., Yun, J. S., and Friedman, J. E., Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J. Biol. Chem., 277, 23301–23307 (2002).
  • 9) Ceriello, A., Oxidative stress and glycemic regulation. Metabolism, 49, 27–29 (2000).
  • 10) Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M., Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes, 52, 1–8 (2003).
  • 11) Kyriakis, J. M., and Avruch, J., Sounding the alarm: protein kinase cascades activated by stress and inflammation. J. Biol. Chem., 271, 24313–24316 (1996).
  • 12) Aguirre, V., Uchida, T., Yenush, L., Davis, R., and White, M. F., The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J. Biol. Chem., 275, 9047–9054 (2000).
  • 13) Hsieh, T.-J., Zhang, S.-L., Filep, J. G., Tang, S.-S., Ingelfinger, J. R., and Chan, J. S. D., High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells. Endocrinology, 143, 2975–2985 (2002).
  • 14) Tanaka, Y., Tran, P. O. T., Harmon, J., and Robertson, R. P., A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity. Proc. Natl. Acad. Sci. USA, 99, 12363–12368 (2002).
  • 15) Blair, A. S., Hajduch, E., Litherland, G. J., and Hundal, H. S., Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress: evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways. J. Biol. Chem., 274, 36293–36299 (1999).
  • 16) Hansen, L. L., Ikeda, Y., Olsen, G. S., Busch, A. K., and Mosthaf, L., Insulin signaling is inhibited by micromolar concentrations of H2O2: evidence for a role of H2O2 in tumor necrosis factor alpha-mediated insulin resistance. J. Biol. Chem., 274, 25078–25084 (1999).
  • 17) Maddux, B. A., See, W., Lawrence, J. C., Jr., Goldfine, A. L., Goldfine, I. D., and Evans, J. L., Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of α-lipoic acid. Diabetes, 50, 404–410 (2001).
  • 18) Tirosh, A., Potashnik, R., Bashan, N., and Rudich, A., Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes: a putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J. Biol. Chem., 274, 10595–10602 (1999).
  • 19) Feifel, E., Obexer, P., Andratsch, M., Euler, S., Taylor, L., Tang, A., Wei, Y., Schramek, H., Curthoys, N. P., and Gstraunthaler, G., p38 MAPK mediates acid-induced transcription of PEPCK in LLC-PK1-FBPase+ cells. Am. J. Physiol. Renal Physiol., 283, F678–688 (2002).
  • 20) Reeves, P. G., Nielsen, F. H., and Fahey, G. C., Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123, 1939–1951 (1993).
  • 21) Goddard, J. G., Basford, D., and Sweeney, G. D., Lipid peroxidation stimulated by iron nitrilotriacetate in rat liver. Biochem. Pharmacol., 35, 2381–2387 (1986).
  • 22) Mihara, M., and Uchiyama, M., Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 86, 271–278 (1978).
  • 23) Markwell, M. A., Haas, S. M., Bieber, L. L., and Tolbert, N. E., A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem., 87, 206–210 (1978).
  • 24) Chomczynski, P., and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162, 156–159 (1987).
  • 25) Ikeda, K., Sun, F., Tanaka, K., Tokumaru, S., and Kojo, S., Increase of lipid hydroperoxides in the rat liver and kidney after administering ferric nitrilotriacetate. Biosci. Biotechnol. Biochem., 62, 1438–1439 (1998).
  • 26) Yamanoi, Y., Awai, M., and Seno, S., Degranulation effect of ferric nitrilotriacetate (Fe3+-NTA) on the pancreatic islet beta-cells: its acute toxic effect on glucose metabolism. Acta Med. Okayama, 38, 423–437 (1984).
  • 27) Awai, M., Narasaki, M., Yamanoi, Y., and Seno, S., Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate: a model of experimental hemochromatosis. Am. J. Pathol., 95, 663–673 (1979).
  • 28) Morel, I., Abalea, V., Sergent, O., Cillard, P., and Cillard, J., Involvement of phenoxyl radical intermediates in lipid antioxidant action of myricetin in iron-treated rat hepatocyte culture. Biochem. Pharmacol., 55, 1399–1404 (1998).
  • 29) Khamaisi, M., Kavel, O., Rosenstock, M., Porat, M., Yuli, M., Kaiser, N., and Rudich, A., Effect of inhibition of glutathione synthesis on insulin action: in vivo and in vitro studies using buthionine sulfoximine. Biochem. J., 349, 579–586 (2000).
  • 30) Lu, B., Ennis, D., Lai, R., Bogdanovic, E., Nikolov, R., Salamon, L., Fantus, C., Le-Tien, H., and Fantus, I. G., Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). J. Biol. Chem., 276, 35589–35598 (2001).
  • 31) Day, B. J., Fridovich, I., and Crapo, J. D., Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch. Biochem. Biophys., 347, 256–262 (1997).
  • 32) Kang, K. W., Ryu, J. H., and Kim, S. G., The essential role of phosphatidylinositol 3-kinase and of p38 mitogen-activated protein kinase activation in the antioxidant response element-mediated rGSTA2 induction by decreased glutathione in H4IIE hepatoma cells. Mol. Pharmacol., 58, 1017–1025 (2000).
  • 33) Valverde, A. M., Burks, D. J., Fabregat, I., Fisher, T. L., Carretero, J., White, M. F., and Benito, M., Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes. Diabetes, 52, 2239–2248 (2003).
  • 34) Shao, J., Qiao, L., Janssen, R. C., Pagliassotti, M., and Friedman, J. E., Chronic hyperglycemia enhances PEPCK gene expression and hepatocellular glucose production via elevated liver activating protein/liver inhibitory protein ratio. Diabetes, 54, 976–984 (2005).
  • 35) Cheong, J., Coligan, J. E., and Shuman, J. D., Activating transcription factor-2 regulates phosphoenolpyruvate carboxykinase transcription through a stress-inducible mitogen-activated protein kinase pathway. J. Biol. Chem., 273, 22714–22718 (1998).
  • 36) Kietzmann, T., Porwol, T., Zierold, K., Jungermann, K., and Acker, H., Involvement of a local fenton reaction in the reciprocal modulation by O2 of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene and the insulin-dependent activation of the glucokinase gene in rat hepatocytes. Biochem. J., 335 (Pt 2), 425–432 (1998).
  • 37) Davies, G. F., Khandelwal, R. L., Wu, L., Juurlink, B. H. J., and Roesler, W. J., Inhibition of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone: a peroxisome proliferator-activated receptor-γ (PPARγ)-independent, antioxidant-related mechanism. Biochem. Pharmacol., 62, 1071–1079 (2001).
  • 38) Uchida, K., Shiraishi, M., Naito, Y., Torii, Y., Nakamura, Y., and Osawa, T., Activation of stress signaling pathways by the end product of lipid peroxidation: 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J. Biol. Chem., 274, 2234–2242 (1999).
  • 39) Bierhaus, A., Schiekofer, S., Schwaninger, M., Andrassy, M., Humpert, P. M., Chen, J., Hong, M., Luther, T., Henle, T., Kloting, I., Morcos, M., Hofmann, M., Tritschler, H., Weigle, B., Kasper, M., Smith, M., Perry, G., Schmidt, A.-M., Stern, D. M., Haring, H.-U., Schleicher, E., and Nawroth, P. P., Diabetes-associated sustained activation of the transcription factor nuclear factor-κB. Diabetes, 50, 2792–2808 (2001).
  • 40) Waltner-Law, M., Daniels, M. C., Sutherland, C., and Granner, D. K., NF-kappa B inhibits glucocorticoid and cAMP-mediated expression of the phosphoenolpyruvate carboxykinase gene. J. Biol. Chem., 275, 31847–31856 (2000).
  • 41) Koistinen, H. A., Chibalin, A. V., and Zierath, J. R., Aberrant p38 mitogen-activated protein kinase signalling in skeletal muscle from type 2 diabetic patients. Diabetologia, 46, 1324–1328 (2003).
  • 42) Carlson, C. J., Koterski, S., Sciotti, R. J., Poccard, G. B., and Rondinone, C. M., Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes, 52, 634–641 (2003).
  • 43) Cao, W., Collins, Q. F., Becker, T. C., Robidoux, J., Lupo, E. G., Jr., Xiong, Y., Daniel, K. W., Floering, L., and Collins, S., p38 mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J. Biol. Chem., 280, 42731–42737 (2005).
  • 44) Yoon, J. C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., Adelmant, G., Stafford, J., Kahn, C. R., Granner, D. K., Newgard, C. B., and Spiegelman, B. M., Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 413, 131–138 (2001).
  • 45) Puigserver, P., Rhee, J., Lin, J., Wu, Z., Yoon, J. C., Zhang, C.-Y., Krauss, S., Mootha, V. K., Lowell, B. B., and Spiegelman, B. M., Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell, 8, 971–982 (2001).
  • 46) Ihara, Y., Yamada, Y., Toyokuni, S., Miyawaki, K., Ban, N., Adachi, T., Kuroe, A., Iwakura, T., Kubota, A., Hiai, H., and Seino, Y., Antioxidant α-tocopherol ameliorates glycemic control of GK rats, a model of type 2 diabetes. FEBS Lett., 473, 24–26 (2000).
  • 47) Yokozawa, T., Kim, H. Y., Cho, E. J., Choi, J. S., and Chung, H. Y., Antioxidant effects of isorhamnetin 3,7-di-O-beta-D-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocin-induced diabetes. J. Agric. Food Chem., 50, 5490–5495 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.