169
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of the AP Endonucleases from Thermoplasma volcanium and Lactobacillus plantarum: Contributions of Two Important Tryptophan Residues to AP Site Recognition

, , &
Pages 2213-2221 | Received 22 Mar 2006, Accepted 25 May 2006, Published online: 22 May 2014

  • 1) Lindahl, T., Instability and decay of the primary structure of DNA. Nature, 362, 709–715 (1993).
  • 2) Hoeijmakers, J. H., Genome maintenance mechanisms for preventing cancer. Nature, 411, 366–374 (2001).
  • 3) Dianov, G. L., Sleeth, K. M., Dianova, I. I., and Allinson, S. L., Repair of abasic sites in DNA. Mutat. Res., 531, 157–163 (2003).
  • 4) Fortini, P., Pascucci, B., Parlanti, E., D’Errico, M., Simonelli, V., and Dogliotti, E., The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie, 85, 1053–1071 (2003).
  • 5) Schärer, O. D., and Jiricny, J., Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays, 23, 270–281 (2001).
  • 6) Shibutani, S., Takeshita, M., and Grollman, A. P., Translesional synthesis on DNA templates containing a single abasic site: a mechanistic study of the “A rule.” J. Biol. Chem., 272, 13916–13922 (1997).
  • 7) Saporito, S. M., Smith-White, B. J., and Cunningham, R. P., Nucleotide sequence of the xth gene of Escherichia coli K-12. J. Bacteriol., 170, 4542–4547 (1988).
  • 8) Ogasawara, N., Nakai, S., and Yoshikawa, H., Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res., 1, 1–14 (1994).
  • 9) Puyet, A., Greenberg, B., and Lacks, S. A., The exoA gene of Streptococcus pneumoniae and its product, a DNA exonuclease with apurinic endonuclease activity. J. Bacteriol., 171, 2278–2286 (1989).
  • 10) Sander, M., Lowenhaupt, K., Lane, W. S., and Rich, A., Cloning and characterization of Rrp1, the gene encoding Drosophila strand transferase: carboxy-terminal homology to DNA repair endo/exonucleases. Nucleic Acids Res., 19, 4523–4529 (1991).
  • 11) Freeland, T. M., Guyer, R. B., Ling, A. Z., and Deering, R. A., Apurinic/apyrimidinic (AP) endonuclease from Dictyostelium discoideum: cloning, nucleotide sequence and induction by sublethal levels of DNA damaging agents. Nucleic Acids Res., 24, 1950–1953 (1996).
  • 12) Babiychuk, E., Kushnir, S., Van Montagu, M., and Inz, D., The Arabidopsis thaliana apurinic endonuclease Arp reduces human transcription factors Fos and Jun. Proc. Natl. Acad. Sci. USA, 91, 3299–3303 (1994).
  • 13) Wilson, T. M., Carney, J. P., and Kelley, M. R., Cloning of the multifunctional rat apurinic/apyrimidinic endonuclease (rAPEN)/redox factor from an immature T cell line. Nucleic Acids Res., 22, 530–531 (1994).
  • 14) Seki, S., Akiyama, K., Watanabe, S., Hatsushika, M., Ikeda, S., and Tsutsui, K., cDNA and deduced amino acid sequence of a mouse DNA repair enzyme (APEX nuclease) with significant homology to Escherichia coli exonuclease III. J. Biol. Chem., 266, 20797–20802 (1991).
  • 15) Robson, C. N., Milne, A. M., Pappin, D. J., and Hickson, I. D., Isolation of cDNA clones encoding an enzyme from bovine cells that repairs oxidative DNA damage in vitro: homology with bacterial repair enzymes. Nucleic Acids Res., 19, 1087–1092 (1991).
  • 16) Demple, B., Herman, T., and Chen, D. S., Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc. Natl. Acad. Sci. USA, 88, 11450–11454 (1991).
  • 17) Seki, S., Hatsushika, M., Watanabe, S., Akiyama, K., Nagao, K., and Tsutsui, K., cDNA cloning, sequencing, expression and possible domain structure of human APEX nuclease homologous to Escherichia coli exonuclease III. Biochim. Biophys. Acta, 1131, 287–299 (1992).
  • 18) Mol, C. D., Kuo, C. F., Thayer, M. M., Cunningham, R. P., and Tainer, J. A., Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature, 374, 381–386 (1995).
  • 19) Gorman, M. A., Morera, S., Rothwell, D. G., de La Fortelle, E., Mol, C. D., Tainer, J. A., Hickson, I. D., and Freemont, P. S., The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J., 16, 6548–6558 (1997).
  • 20) Mol, C. D., Izumi, T., Mitra, S., and Tainer, J. A., DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature, 403, 451–456 (2000).
  • 21) Weiss, B., Endonuclease II of Escherichia coli is exonuclease III. J. Biol. Chem., 251, 1896–1901 (1976).
  • 22) Singer, B., and Hang, B., What structural features determine repair enzyme specificity and mechanism in chemically modified DNA? Chem. Res. Toxicol., 10, 713–732 (1997).
  • 23) Shida, T., Noda, M., and Sekiguchi, J., Cleavage of single- and double-stranded DNAs containing an abasic residue by Escherichia coli exonuclease III (AP endonuclease VI). Nucleic Acids Res., 24, 4572–4576 (1996).
  • 24) Kaneda, K., Sekiguchi, J., and Shida, T., Role of the tryptophan residue in the vicinity of the catalytic center of exonuclease III family AP endonucleases: AP site recognition mechanism. Nucleic Acids Res., 34, 1552–1563 (2006).
  • 25) Shida, T., Ogawa, T., Ogasawara, N., and Sekiguchi, J., Characterization of Bacillus subtilis ExoA protein: a multifunctional DNA-repair enzyme similar to the Escherichia coli Exonuclease III. Biosci. Biotechnol. Biochem., 63, 1528–1534 (1999).
  • 26) Kawashima, T., Amano, N., Koike, H., Makino, S., Higuchi, S., Kawashima-Ohya, Y., Watanabe, K., Yamazaki, M., Kanehori, K., Kawamoto, T., Nunoshiba, T., Yamamoto, Y., Aramaki, H., Makino, K., and Suzuki, M., Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc. Natl. Acad. Sci. USA, 97, 14257–14262 (2000).
  • 27) Wang, J., Li, T., Guo, X., and Lu, Z., Exonuclease III protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Res., 33, e23 (2005).
  • 28) Simpson, R. B., Interaction of the cAMP receptor protein with the lac promoter. Nucleic Acids Res., 8, 759–766 (1980).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.