122
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Client Binding of Cdc37 Is Regulated Intramolecularly and Intermolecularly

, , &
Pages 1542-1546 | Received 10 Apr 2006, Accepted 25 Apr 2006, Published online: 22 May 2014

  • 1) Hartl, F. U., and Hayer-Hartl, M., Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295, 1852–1858 (2002).
  • 2) Mosser, D. D., and Morimoto, R. I., Molecular chaperones and the stress of oncogenesis. Oncogene, 23, 2907–2918 (2004).
  • 3) Young, J. C., Moarefi, I., and Hartl, F. U., Hsp90: a specialized but essential protein-folding tool. J. Cell. Biol., 154, 267–273 (2001).
  • 4) Picard, D., Heat-shock protein 90, a chaperone for folding and regulation. Cell. Mol. Life Sci., 59, 1640–1648 (2002).
  • 5) Pratt, W. B., and Toft, D. O., Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med., 228, 111–133 (2003).
  • 6) Wegele, H., Müller, L., and Buchner, J., Hsp70 and Hsp90—a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol., 151, 1–44 (2004).
  • 7) Terasawa, K., Minami, M., and Minami, Y., Constantly updated knowledge of Hsp90. J. Biochem., 137, 443–447 (2005).
  • 8) Hunter, T., and Poon, R. Y. C., Cdc37: a protein kinase chaperone? Trends Cell Biol., 7, 157–161 (1997).
  • 9) Pearl, L. H., Hsp90 and Cdc37—a chaperone cancer conspiracy. Curr. Opin. Genet. Dev., 15, 55–61 (2005).
  • 10) Brugge, J. S., Interaction of the Rous sarcoma virus protein pp60src with the cellular proteins pp50 and pp90. Curr. Top. Microbiol. Immunol., 123, 1–22 (1986).
  • 11) Stancato, L. F., Chow, Y.-H., Hutchison, K. A., Perdew, G. H., Jove, R., and Pratt, W. B., Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J. Biol. Chem., 268, 21711–21716 (1993).
  • 12) Prince, T., Sun, L., and Matts, R. L., Cdk2: a genuine protein kinase client of Hsp90 and Cdc37. Biochemistry, 44, 15287–15295 (2005).
  • 13) Dai, K., Kobayashi, R., and Beach, D., Physical interaction of mammalian CDC37 with CDK4. J. Biol. Chem., 271, 22030–22034 (1996).
  • 14) Basso, A. D., Solit, D. B., Chiosis, G., Giri, B., Tsichlis, P., and Rosen, N., Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem., 277, 39858–39866 (2002).
  • 15) Terasawa, K., Yoshimatsu, K., Iemura, S., Natsume, T., Tanaka, K., and Minami, Y., Cdc37 iteracts with the glycine-rich loop of Hsp90 client kinases. Mol. Cell. Biol., 26, 3378–3389 (2006).
  • 16) Terasawa, K., and Minami, Y., A client-binding site of Cdc37. FEBS J., 272, 4684–4690 (2005).
  • 17) Zhao, Q., Boschelli, F., Caplan, A. J., and Arndt, K. T., Identification of a conserved sequence motif that promotes Cdc37 and cyclin D1 binding to Cdk4. J. Biol. Chem., 279, 12560–12564 (2004).
  • 18) Prince, T., and Matts, R. L., Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37. J. Biol. Chem., 279, 39975–39981 (2004).
  • 19) Silverstein, A. M., Grammatikakis, N., Cochran, B. H., Chinkers, M., and Pratt, W. B., p50cdc37 binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. J. Biol. Chem., 273, 20090–20095 (1998).
  • 20) Grammatikakis, N., Lin, J.-H., Grammatikakis, A., Tsichlis, P. N., and Cochran, B. H., p50cdc37 acting in concert with Hsp90 is required for Raf-1 function. Mol. Cell. Biol., 19, 1661–1672 (1999).
  • 21) Hartson, S. D., Irwin, A. D., Shao, J., Scroggins, B. T., Volk, L., Huang, W., and Matts, R. L., p50cdc37 is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules. Biochemistry, 39, 7631–7644 (2000).
  • 22) Roe, S. M., Ali, M. M. U., Meyer, P., Vaughan, C. K., Panaretou, B., Piper, P. W., Prodromou, C., and Pearl, L. H., The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37. Cell, 116, 87–98 (2004).
  • 23) Shao, J., Irwin, A., Hartson, S. D., and Matts, R. L., Functional dissection of Cdc37: characterization of domain structure and amino acid residues critical for protein kinase binding. Biochemistry, 42, 12577–12588 (2003).
  • 24) Cutforth, T., and Rubin, G. M., Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell, 77, 1027–1036 (1994).
  • 25) Bandhakavi, S., McCann, R. O., Hanna, D. H., and Glover, C. V. C., A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J. Biol. Chem., 278, 2829–2836 (2003).
  • 26) Hanks, S. K., and Hunter, T., The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J., 9, 576–596 (1995).
  • 27) Zhang, W., Hirshberg, M., McLaughlin, S. H., Lazer, G. A., Grossmann, J. G., Nielsen, P. R., Sobott, F., Robinson, C. V., Jackson, S. E., and Laue, E. D., Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J. Mol. Biol., 340, 891–907 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.