435
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Metabolism of 4-Amino-3-hydroxybenzoic Acid by Bordetella sp. Strain 10d: A Different Modified Meta-Cleavage Pathway for 2-Aminophenols

, , &
Pages 2653-2661 | Received 12 May 2006, Accepted 27 Jun 2006, Published online: 22 May 2014

  • 1) Nishino, S. F., and Spain, J. C., Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol., 59, 2520–2525 (1993).
  • 2) Spiess, T., Desiere, F., Fischer, P., Spain, J. C., Knackmuss, H. J., and Lenke, H., A new 4-nitrotoluene degradation pathway in a Mycobacterium strain. Appl. Environ. Microbiol., 64, 446–452 (1998).
  • 3) Katsivela, E., Wray, V., Pieper, D. H., and Wittich, R. M., Initial reactions in the biodegradation of 1-chloro-4-nitrobenzene by a newly isolated bacterium, strain LW1. Appl. Environ. Microbiol., 65, 1405–1412 (1999).
  • 4) Muraki, T., Taki, M., Hasegawa, Y., Iwaki, H., and Lau, P. C. K., Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl. Environ. Microbiol., 69, 1564–1572 (2003).
  • 5) Parales, R. E., Nitrobenzoates and aminobenzoates are chemoattractants for Pseudomonas strains. Appl. Environ. Microbiol., 70, 285–292 (2004).
  • 6) Hughes, M. A., and Williams, P. A., Cloning and characterization of the pnb genes, encoding enzymes for 4-nitrobenzoate catabolism in Pseudomonas putida TW3. J. Bacteriol., 183, 1225–1232 (2001).
  • 7) He, Z., and Spain, J. C., Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway). Arch. Microbiol., 171, 309–316 (1999).
  • 8) Davis, J. K., He, Z., Somerville, C. C., and Spain, J. C., Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: divergent evolution of 2-aminophenol meta-cleavage pathway. Arch. Microbiol., 172, 330–339 (1999).
  • 9) Takenaka, S., Murakami, S., Kim, Y. J., and Aoki, K., Complete nucleotide sequence and functional analysis of the genes for 2-aminophenol metabolism from Pseudomonas sp. AP-3. Arch. Microbiol., 174, 265–272 (2000).
  • 10) Shingler, V., Powlowski, J., and Marklund, U., Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol., 174, 711–724 (1992).
  • 11) Park, H. S., and Kim, H. S., Genetic and structural organization of the aminophenol catabolic operon and its implication for evolutionary process. J. Bacteriol., 183, 5074–5081 (2001).
  • 12) Takenaka, S., Asami, T., Orii, C., Murakami, S., and Aoki, K., A novel meta-cleavage dioxygenase that cleaves a carboxyl-group-substituted 2-aminophenol: purification and characterization of 4-amino-3-hydroxybenzoate 2,3-dioxygenase from Bordetella sp. strain 10d. Eur. J. Biochem., 269, 5871–5877 (2002).
  • 13) Orii, C., Takenaka, S., Murakami, S., and Aoki, K., A novel coupled enzyme assay reveals an enzyme responsible for the deamination of a chemically unstable intermediate in the metabolic pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. Eur. J. Biochem., 271, 3248–3254 (2004).
  • 14) Sala-Trepat, J. M., and Evans, W. C., The meta cleavage of catechol by Azotobacter species: 4-oxalocrotonate pathway. Eur. J. Biochem., 20, 400–413 (1971).
  • 15) Chen, L. H., Kenyon, G. L., Curtin, F., Harayama, S., Bembenek, M. E., Hajipour, G., and Whitman, C. P., 4-Oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer. J. Biol. Chem., 267, 17716–17721 (1992).
  • 16) Harayama, S., Rekik, M., Ngai, K. L., and Ornston, L. N., Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida. J. Bacteriol., 171, 6251–6258 (1989).
  • 17) Collinsworth, W. L., Chapman, P. J., and Dagley, S., Stereospecific enzymes in the degradation of aromatic compounds by Pseudomonas putida. J. Bacteriol., 113, 922–931 (1973).
  • 18) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265–275 (1995).
  • 19) Takenaka, S., Murakami, S., Shinke, R., Hatakeyama, K., Yukawa, H., and Aoki, K., Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme. J. Biol. Chem., 272, 14727–14732 (1997).
  • 20) Weber, K., and Osborn, M., The reliability of molecular weight determinations by dodecyl sulfate–polyacrylamide gel electrophoresis. J. Biol. Chem., 244, 4406–4412 (1969).
  • 21) Matsudaira, P., Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem., 262, 10035–10038 (1987).
  • 22) Aoki, K., Kodama, N., Murakami, S., and Shinke, R., A high level of accumulation of 2-hydroxymuconic 6-semialdehyde from aniline by the transpositional mutant Y-2 of Pseudomonas species AW-2. Microbial. Res., 152, 129–135 (1997).
  • 23) Wiley, R. H., and Hart, A. J., 2-Pyrones. IX. 2-Pyrone-6-carboxylic acid and its derivatives. J. Am. Chem. Soc., 76, 1942–1944 (1954).
  • 24) Takenaka, S., Setyorini, E., Kim, Y.-J., Murakami, S., and Aoki, K., Constitutive synthesis of enzymes involved in 2-aminophenol metabolism and inducible synthesis of enzymes involved in benzoate, p-hydroxybenzoate, and protocatechuate metabolism in Pseudomonas sp. strain AP-3. Biosci. Biotechnol. Biochem., 69, 1033–1035 (2005).
  • 25) Horn, J. M., Harayama, S., and Timmis, K. N., DNA sequence determination of the TOL plasmid (pWWO) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolism. Mol. Microbiol., 5, 2459–2474 (1991).
  • 26) Annett, R. G., and Kosicki, G. W., Oxalacetate keto-enol tautomerase: purification and characterization. J. Biol. Chem., 244, 2059–2067 (1969).
  • 27) Arai, H., Ohishi, T., Chang, M. Y., and Kudo, T., Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiol., 146, 1707–1715 (2000).
  • 28) Crawford, R. L., Novel pathway for degradation of protocatechuic acid in Bacillus species. J. Bacteriol., 121, 531–536 (1975).
  • 29) Davis, B. J., Disc electrophoresis. II. Method and application to human serum proteins. Ann. NY Acad. Sci., 121, 404–427 (1964).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.