441
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Purification and Characterization of α-Glucosidase I from Japanese Honeybee (Apis cerana japonica) and Molecular Cloning of Its cDNA

, , , , , , , , , , , , , & show all
Pages 2889-2898 | Received 31 May 2006, Accepted 14 Aug 2006, Published online: 22 May 2014

  • 1) Chiba, S., α-Glucosidase. In “Handbook of Amylases and Related Enzymes,” ed. The Amylase Research Society of Japan, Pergamon Press, Oxford, pp. 104–116 (1998).
  • 2) Chiba, S., Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem., 61, 1233–1239 (1997).
  • 3) Henrissat, B., and Davies, G. J., Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol., 7, 637–644 (1997).
  • 4) Kimura, A., Molecular anatomy of α-glucosidase. Trends Glycosci. Glycotechnol., 12, 373–380 (2000).
  • 5) Takewaki, S., Chiba, S., Kimura, A., Matsui, H., and Koike, Y., Purification and properties of α-glucosidases of the honeybee Apis mellifera L. Agric. Biol. Chem., 44, 731–740 (1980).
  • 6) Nishimoto, M., Kubota, M., Tsuji, M., Mori, H., Kimura, A., Matsui, H., and Chiba, S., Purification and substrate specificity of honeybee, Apis mellifera L., α-glucosidase III. Biosci. Biotechnol. Biochem., 65, 1610–1616 (2001).
  • 7) Kimura, A., Kitahara, F. Y., and Chiba, S., Characteristic of transglucosylation of honey bee α-glucosidase I. Agric. Biol. Chem., 51, 1859–1864 (1987).
  • 8) Kimura, A., Takewaki, S., Matsui, H., Kubota, M., and Chiba, S., Allosteric properties, substrate specificity and subsite affinities of honeybee α-glucosidase I. J. Biochem., 107, 762–768 (1990).
  • 9) Takewaki, S., Kimura, A., Kubota, M., and Chiba, S., Substrate specificity and subsite affinities of honeybee α-glucosidase II. Biosci. Biotechnol. Biochem., 57, 1508–1513 (1993).
  • 10) Kubota, M., Tsuji, M., Nishimoto, M., Wongchawalit, J., Okuyama, M., Mori, H., Matsui, H., Surarit, R., Svasti, J., Kimura, A., and Chiba, S., Localization of α-glucosidases I, II, and III in organs of European honeybee, Apis mellifera L., and origin of α-glucosidase in honey. Biosci. Biotechnol. Biochem., 68, 2346–2352 (2004).
  • 11) Kubo, T., Sasaki, M., Nakamura, J., Sasagawa, H., Ohashi, K., Takeuchi, H., and Natori, S., Change in the expression of hypopharyngeal-gland proteins of the worker honeybees (Apis mellifera L.) with age and/or role. J. Biochem., 119, 291–295 (1996).
  • 12) Ohashi, K., Sawata, M., Takeuchi, H., Natori, S., and Kubo, T., Molecular cloning of cDNA and analysis of expression of the gene for α-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem. Biophys. Res. Commun., 221, 380–385 (1996).
  • 13) Free, J. B., “Bees and Mankind,” George Allen and Unwin, London, p. 80 (1982).
  • 14) Gould, J. L., and Gould, C. G., “The Honey Bee,” W. H. Freeman, New York, pp. 1–17 (1988).
  • 15) Takahashi, M., Shimomura, T., and Chiba, S., Biochemical studies on buckwheat α-glucosidase. Part III. Transglucosylation action of the enzyme and isolation of the reaction products. Agric. Biol. Chem., 33, 1399–1410 (1969).
  • 16) Dayhoff, M. O., Perlmann, G. E., and Maclnnes, D. A., Partial specific volumes, in aqueous solution, of three proteins. J. Am. Chem. Soc., 74, 2515–2517 (1952).
  • 17) Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350–356 (1956).
  • 18) Reisfeld, R. A., Lewis, U. J., and Williams, D. A., Disk electrophoresis of basic proteins and properties of polyacrylamide gels. Nature, 195, 281–283 (1962).
  • 19) Chomczynski, P., and Sacchi, N., Single step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem., 162, 156–159 (1987).
  • 20) Mar, S. S., Mori, H., Fukuhara, A., Okuyama, M., Saburi, W., Fukuda, K., Lee, J.-H., Chiba, S., and Kimura, A., Purification, characterization, and sequence analysis of two α-amylase isoforms from azuki bean, Vigna angularis, showing different affinity towards β-cyclodextrin. Biosci. Biotechnol. Biochem., 67, 1080–1093 (2003).
  • 21) King, T. P., Separation of proteins by ammonium sulfate gradient solubilization. Biochemistry, 11, 367–371 (1972).
  • 22) Brown, W. E. L., and Hill, A. V., The oxygen-dissociation curve of blood, and its thermodynamical basis. Proc. Roy. Soc., B94, 297–334 (1923).
  • 23) Lineweaver, H., and Burk, D., The determination of enzyme dissociation constants. J. Am. Chem. Soc., 56, 658–666 (1934).
  • 24) Monod, J., Changeux, J.-P., and Jacob, F., Allosteric proteins and cellular control systems. J. Mol. Biol., 6, 306–329 (1963).
  • 25) Huber, R. E., and Thompson, D. J., Study on a honey bee sucrase exhibiting unusual kinetics and transglucolytic activity. Biochemistry, 12, 4011–4020 (1973).
  • 26) Ozaki, H., and Yamada, K., Isolation of Streptomyces sp. producing glucose-tolerant β-glucosidases and properties of the enzymes. Agric. Biol. Chem., 55, 979–987 (1991).
  • 27) Neet, K. E., and Ainslie, G. R., Jr., Hysteretic enzymes. In “Methods in Enzymology,” Vol. 64, ed. Purich, D. L., Academic Press, New York, pp. 192–226 (1980).
  • 28) Nielsen, H., Engelbrecht, J., Brunak, S., and Von Heijne, G., Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng., 10, 1–6 (1997).
  • 29) Takata, H., Kuriki, T., Okada, S., Takesada, Y., Iizuka, M., Minamiura, N., and Imanaka, T., Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1→4)- and α-(1→6)-glucosidic linkages. J. Biol. Chem., 267, 18447–18452 (1992).
  • 30) Kuriki, T., and Imanaka, T., The concept of the α-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng., 87, 557–565 (1999).
  • 31) Watanabe, K., Hata, Y., Kizaki, H., Katsube, Y., and Suzuki, Y., The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J. Mol. Biol., 269, 142–153 (1997).
  • 32) Gouet, P., Courcelle, E., Stuart, D. I., and Metoz, F., ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics, 15, 305–308 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.