934
Views
88
CrossRef citations to date
0
Altmetric
Original Articles

Isolation of Sphingoid Bases of Sea Cucumber Cerebrosides and Their Cytotoxicity against Human Colon Cancer Cells

, , , , &
Pages 2906-2912 | Received 08 Jun 2006, Accepted 27 Jul 2006, Published online: 22 May 2014

  • 1) Cuvillier, O., Sphingosine in apoptosis signaling. Biochim. Biophys. Acta, 1585, 153–162 (2002).
  • 2) Maceyka, M., Payne, S. G., Milstien, S., and Spiegel, S., Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim. Biophys. Acta, 1585, 193–201 (2002).
  • 3) Pettus, B. J., Chalfant, C. E., and Hannun, Y. A., Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta, 1585, 114–125 (2002).
  • 4) Dillehay, D. L., Webb, S. K., Schmelz, E. M., and Merrill Jr., A. H., Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J. Nutr., 124, 615–620 (1994).
  • 5) Schmelz, E. M., Sullards, M. C., Dillehay, D. L., and Merrill Jr., A. H., Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J. Nutr., 130, 522–527 (2000).
  • 6) Symolon, H., Schmelz, E. M., Dillehay, D. L., and Merrill Jr., A. H., Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice. J. Nutr., 134, 1157–1161 (2004).
  • 7) Aida, K., Kinoshita, M., Tanji, M., Sugawara, T., Tamura, M., Ono, J., Ueno, N., and Ohnishi, M., Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydrazine-treated mice. J. Oleo Sci., 54, 45–49 (2005).
  • 8) Inamine, M., Suzui, M., Morioka, T., Kinjo, T., Kaneshiro, T., Sugishita, T., Okada, T., and Yoshimi, N., Inhibitory effect of dietary monoglucosylceramide 1-O-β-glucosyl-N-2′-hydroxyarachidoyl-4,8-sphingadienine on two different categories of colon preneoplastic lesions induced by 1,2-dimethylhydrazine in F344 rats. Cancer Sci., 96, 876–881 (2005).
  • 9) Ahn, E. H., and Schroeder, J. J., Sphingoid bases and ceramide induce apoptosis in HT-29 and HCT-116 human colon cancer cells. Exp. Biol. Med., 227, 345–353 (2002).
  • 10) Sugawara, T., Kinoshita, M., Ohnishi, M., and Miyazawa, T., Apoptosis induction by wheat-flour sphingoid bases in DLD-1 human colon cancer cells. Biosci. Biotechnol. Biochem., 66, 2228–2231 (2002).
  • 11) Aida, K., Kinoshita, M., Sugawara, T., Ono, J., Miyazawa, T., and Ohnishi, M., Apoptosis inducement by plant and fungus sphingoid bases in human colon cancer cells. J. Oleo Sci., 53, 503–510 (2004).
  • 12) Yamada, K., Chemo-pharmaceutical studies on the glycosphingolipid constituents from echinoderm, sea cucumbers, as the medicinal materials. Yakugaku Zasshi, 122, 1133–1143 (2002).
  • 13) Yamada, K., Hamada, A., Kisa, F., Miyamoto, T., and Higuchi, R., Constituents of holothuroidea, 13. Structure of neuritogenic active ganglioside molecular species from the sea cucumber Stichopus chloronotus. Chem. Pharm. Bull., 51, 46–52 (2003).
  • 14) Sugawara, T., and Miyazawa, T., Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection. Lipids, 34, 1231–1237 (1999).
  • 15) Sugawara, T., Kinoshita, M., Ohnishi, M., Nagata, J., and Saito, M., Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J. Nutr., 133, 2777–2782 (2003).
  • 16) Sugawara, T., Kinoshita, M., Ohnishi, M., Tsuzuki, T., Miyazawa, T., Nagata, J., Hirata, T., and Saito, M., Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci. Biotechnol. Biochem., 68, 2541–2546 (2004).
  • 17) Bligh, E. G., and Dyer, W. J., A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911–917 (1959).
  • 18) Morrison, W. R., and Hay, J. D., Polar lipids in bovine milk. II. Long-chain bases, normal and 2-hydroxy fatty acids, and isomeric cis and trans monoenoic fatty acids in the sphingolipids. Biochim. Biophys. Acta, 202, 460–467 (1970).
  • 19) Ohnishi, M., Ito, S., and Fujino, Y., Characterization of sphingolipids in spinach leaves. Biochim. Biophys. Acta, 752, 416–422 (1983).
  • 20) Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., Identification of hitherto unknown branched-chain bases in sulphatides of the salt (rectal) gland of spiny dogfish. Biochim. Biophys. Acta, 306, 307–316 (1973).
  • 21) Yasugi, E., Kasama, T., and Seyama, Y., Branched long-chain bases in cerebrosides of the guinea pig Harderian gland. J. Biochem., 102, 1477–1482 (1987).
  • 22) Ishiyama, M., Shiga, M., Sakamoto, K., Mizoguchi, M., and He, P., A new sulfonated tetrazolium salt that produces a highly water-soluble formazon dye. Chem. Pharm. Bull., 41, 1118–1122 (1993).
  • 23) Harada-Shiba, M., Kinoshita, M., Kamido, H., and Shimokado, K., Oxidized low-density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. J. Biol. Chem., 273, 9681–9687 (1998).
  • 24) Lynch, D. V., Sphingolipids. In “Lipid Metabolism in Plants,” ed. Moore Jr., T. S., CRC Press Inc., Boca Raton, pp. 285–308 (1993).
  • 25) Karlsson, K. A., On the chemistry and occurrence of sphingolipid long-chain bases. Chem. Phys. Lipids, 5, 6–43 (1970).
  • 26) Sperling, P., Libish, B., Zähringer, U., Napier, J. A., and Heinz, E., Functional identification of a Δ8-sphingolipid desaturase from Borago officinalis. Arch. Biochem. Biophys., 388, 293–298 (2001).
  • 27) Duran, R., Zubia, E., Ortega, M. J., Naranjo, S., and Salva, J., Phallusides, new glucosphingolipids from the ascidian Phallusia fumigata. Tetrahedron, 54, 14597–14602 (1998).
  • 28) Jin, W., Rinehart, K. L., and Jares-Erijman, E. A., Ophidiacerebrosides: cytotoxic glycosphingolipids containing a novel sphingosine from a sea star. J. Org. Chem., 59, 144–147 (1994).
  • 29) Diaz de Vivar, M. E., Seldes, A. M., and Maier, M. S., Two novel glucosylceramides from gonads and body walls of the Patagonian starfish Allostichaster inaequalis. Lipids, 37, 597–603 (2002).
  • 30) Ohashi, Y., Tanaka, T., Akashi, S., Morimoto, S., Kishimoto, Y., and Nagai, Y., Squid nerve sphingomyelin containing an unusual sphingoid base. J. Lipid Res., 41, 1118–1124 (2000).
  • 31) Sweeney, E. A., Inokuchi, J., and Igarashi, Y., Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptosis pathway than ceramide. FEBS Lett., 425, 61–65 (1998).
  • 32) Sakakura, C., Sweeney, E. A., Shirahama, T., Hakomori, S., and Igarashi, Y., Suppression of Bcl-2 gene expression by sphingosine in the apoptosis of human leukemic HL-60 cells during phorbol ester-induced terminal differentiation. FEBS Lett., 379, 177–180 (1996).
  • 33) Shirahama, T., Sakakura, C., Sweeney, E. A., Ozawa, M., Takemoto, M., Nishiyama, K., Ohi, Y., and Igarashi, Y., Sphingosine induces apoptosis in androgen-independent human prostatic carcinoma DU-145 cells by suppression of bcl-XL gene expression. FEBS Lett., 407, 97–100 (1997).
  • 34) Hung, W. C., Chang, H. C., and Chuang, L. Y., Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. Biochem. J., 338, 161–166 (1999).
  • 35) Sadahira, Y., Ruan, F., Hakomori, S., and Igarashi, Y., Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc. Natl. Acad. Sci. USA, 89, 9686–9690 (1992).
  • 36) Nilsson, Å., Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim. Biophys. Acta, 164, 575–584 (1968).
  • 37) Nilsson, Å., Metabolism of cerebroside in the intestinal tract of the rat. Biochem. Biophys. Acta, 187, 113–121 (1969).
  • 38) Schmelz, E. M., Crall, K. J., Larocque, R., Dillehay, D. L., and Merrill Jr., A. H., Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J. Nutr., 124, 702–712 (1994).
  • 39) Yang, P., Collin, P., Madden, T., Chan, D., Sweeney-Gotsch, B., McConkey, D., and Newman, R. A., Inhibition of proliferation of PC3 cells by the branched-chain fatty acid, 12-methyltetradecanoic acid, is associated with inhibition of 5-lipoxygenase. Prostate, 55, 281–291 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.